Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Breast Cancer (Auckl) ; 18: 11782234241234771, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38504674

RESUMO

Background: In the year 2020, breast cancer was the most common form of cancer worldwide. Roughly 70% of breast cancers are estrogen receptor-positive (ER+). MicroRNA-190b (miR-190b) has previously been reported to be upregulated in ER+ breast cancers. Previously, we have demonstrated that miR-190b is hypomethylated in ER+ breast cancers, potentially leading to its upregulation. Objectives: To further study the role of miR-190b in ER+ breast cancer and to identify its clinically relevant targets in breast cancer. Design: Patient cohort and cell line-based RNA-sequencing analysis. Methods: The Cancer Genome Atlas was used to obtain gene expression data and clinical information on patients with breast cancer. To identify messenger RNA (mRNA) targets for miR-190b, the ER+ breast cancer cell line T-47D was used to immunoprecipitate biotin-labeled miR-190b followed by RNA sequencing. Western blot was used to confirm miR-190b target. Patient survival based on miR-190b and selected target was studied using the Cancer Genome Atlas. Results: In this study, we confirm that miR-190b is overexpressed in breast cancer via differential expression analysis and show that high expression of miR-190b results in more favorable outcomes in Luminal A patients, hazard ratio (HR) = 0.29, 95% confidence interval [CI] = 0.12-0.71, P = .0063. MicroRNA-190b target analysis identified RING finger and WD repeat domain 3 (RFWD3) as one of miR-190b regulatory targets in ER+ breast cancer. Survival analysis of RFWD3 showed that elevated levels result in poorer overall survival in patients with Luminal A breast cancer (HR = 2.22, 95% CI = 1.33-3.71, P = .002). Gene ontology analysis of our sequencing results indicates that miR-190b may have a role in breast cancer development and/or tumorigenesis and that it may be a suitable tool in characterization between the ER+ subtypes, Luminal A, and Luminal B. Conclusions: We show that miR-190b targets RFWD3 in ER+ breast cancers leading to lower RFWD3 protein expression. Low levels of RFWD3 are associated with better outcomes in patients with Luminal A breast cancer but not in patients with Luminal B breast cancer. These findings provide novel insights into miR-190b role in breast cancer and that its clinical relevance is subtype specific.


MicroRNA-190b targets RFWD3 in ER-positive Breast Cancer Breast cancer is the most common diagnosed type of cancer worldwide. Most of them, or 70%, overexpressed the estrogen receptor (ER) which can be targeted with drugs. MicroRNA-190b (miR-190b) is known to be overexpressed in these types of breast cancers, and we have shown that loss of DNA methylation within the genomic region of miR-190b occurs in these ER+ cancers as well, which potentially is the cause for its overexpression. We, therefore, aimed at understanding miR-190b further. To do so, we used a technique called immunoprecipitation to capture miR-190b targets and performed RNA sequencing to identify potential targets. Of the targets, we identified RFWD3 and performed a western blot to confirm whether it was a true target. Finally, we performed survival analysis using data from the Cancer Genome Atlas to see whether RFWD3 was important for patient prognosis. In summary, we identified RFWD3 to be a target of miR-190b in ER+ breast cancers and that its expression is lower when miR-190b is elevated. We also saw that lower levels of RFWD3 are linked to better outcomes in a subgroup of ER+ breast cancers called Luminal A. These findings help in understanding miR-190b and its role in breast cancer and show that its clinical relevance is subgroup specific.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...