Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Tipo de estudo
Intervalo de ano de publicação
1.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-972796

RESUMO

Aims@#Lactococcus lactis is a non-colonizing, generally-regarded as safe (GRAS) lactic acid bacteria that has been frequently studied as a potential vector for bactofection. To mediate bactofection, a series of interaction between the bacteria and the host cell needs to occur. This study aims to investigate the in vitro bacterial-cell interaction between a locally-isolated L. lactis M4 strain with human colorectal cancer line, Caco-2.@*Methodology and results@#Bacterial interaction was evaluated via adherence and internalisation assays. A 250:1 ratio of bacteria to cancer cell was selected as the optimum multiplicity of infection for all assays. After 2 h, L. lactis M4 was able to adhere to and internalise into Caco-2 cells at comparable rates to commercial strains L. lactis NZ9000 and MG1363. @*Conclusion, significance and impact of study@#Findings from this study showed that this strain has similar interaction properties with the commercial strains and would make a promising candidate for future bactofection studies and development of bacteria-mediated DNA vaccination against various diseases.


Assuntos
Lactococcus lactis , Neoplasias Colorretais , Células CACO-2
2.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-976017

RESUMO

@#Introduction: Multidrug resistance bacteria is alarming worldwide. A lot of research were done and are ongoing to search for the best, convenient and economically affordable ways to fight them. With the latest genome editing tool; Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) technology, this research was performed to develop a novel strategy to genetically modify the genome and inhibit the growth of Klebsiella pneumoniae (UPM ESBLKP1), an Extended Spectrum Beta Lactamases (ESBL) organism. Methods: A CRISPR-Cas9 vector was constructed together with guide RNAs designed specifically for the targeted uppP gene, a gene responsible for bacterial cell growth and protection. Results: The growth and cell wall integrity of the modified Klebsiella pneumoniae (ΔUPM ESBLKP1) were significantly inhibited and reduced, respectively. Interestingly, wild type Klebsiella pneumoniae showed a normal growth curve while modified strains showed a faster doubling rate when supplemented with Luria-Bertani media. In contrast, slower growth rate of modified strain was observed in the M9 minimal media. This explained the higher doubling rate of mutants on nutrient rich medium earlier is being related to gene recovery. They grew slowly in the minimal media as they were adapting to a new environment while recovering the uppP gene and surviving, proving the success of its gene modification. Conclusion: The developed CRISPR-gRNA system was able to modify the targeted Klebsiella pneumoniae gene hence providing an opportunity to develop a new drug for Klebsiella pneumoniae infection as an alternative to antibiotics.

3.
Artigo em Chinês | WPRIM (Pacífico Ocidental) | ID: wpr-950479

RESUMO

Objective To investigate the antibacterial effect of selected lactic acid bacteria (LAB) biofilms on the planktonic and biofilm population of methicillin-resistant Staphylococcus aureus (MRSA) (S547). Methods In this study, biofilm-forming LAB were isolated from tairu and kefir. Isolate Y1 and isolate KF were selected based on their prominent inhibition against test pathogens (using spot-on-agar method and agar-well-diffusion assay) and efficient biofilm production (using tissue culture plate method). They were then identified as Lactobacillus casei (L. casei) Y1 and Lactobacillus plantarum (L. plantarum) KF, respectively using 16S rDNA gene sequencing. The influence of incubation time, temperature and aeration on the biofilm production of L. casei Y1 and L. plantarum KF was also investigated using tissue culture plate method. The inhibitory activity of both the selected LAB biofilms was evaluated against MRSA (Institute for Medical Research code: S547) using L. plantarum ATCC 8014 as the reference strain. Results L. casei Y1 showed the highest reduction of MRSA biofilms, by 3.53 log at 48 h while L. plantarum KF records the highest reduction of 2.64 log at 36 h. In inhibiting planktonic population of MRSA (S547), both L. casei Y1 and L. plantarum KF biofilms recorded their maximum reduction of 4.13 log and 3.41 log at 24 h, respectively. Despite their inhibitory effects being time-dependent, both LAB biofilms exhibited good potential in controlling the biofilm and planktonic population of MRSA (S547). Conclusions The results from this study could highlight the importance of analysing biofilms of LAB to enhance their antibacterial efficacy. Preferably, these protective biofilms of LAB could also be a better alternative to control the formation of biofilms by pathogens such as MRSA.

4.
BMC Biotechnol ; 15: 113, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26715153

RESUMO

BACKGROUND: The exploitation of the surface display system of food and commensal lactic acid bacteria (LAB) for bacterial, viral, or protozoan antigen delivery has received strong interest recently. The Generally Regarded as Safe (GRAS) status of the Lactococcus lactis coupled with a non-recombinant strategy of in-trans surface display, provide a safe platform for therapeutic drug and vaccine development. However, production of therapeutic proteins fused with cell-wall anchoring motifs is predominantly limited to prokaryotic expression systems. This presents a major disadvantage in the surface display system particularly when glycosylation has been recently identified to significantly enhance epitope presentation. In this study, the glycosylated murine Tyrosinase related protein-2 (TRP-2) with the ability to anchor onto the L. lactis cell wall was produced in suspension adapted Chinese Hamster Ovary (CHO-S) cells by expressing TRP-2 fused with cell wall anchoring LysM motif (cA) at the C-terminus. RESULTS: A total amount of 33 µg of partially purified TRP-2-cA from ~6.0 g in wet weight of CHO-S cells was purified by His-tag affinity chromatography. The purified TRP-2-cA protein was shown to be N-glycosylated and successfully anchored to the L. lactis cell wall. CONCLUSIONS: Thus cell surface presentation of glycosylated mammalian antigens may now permit development of novel and inexpensive vaccine platforms.


Assuntos
Apresentação de Antígeno/genética , Parede Celular/metabolismo , Oxirredutases Intramoleculares/metabolismo , Lactococcus lactis/metabolismo , Animais , Apresentação de Antígeno/fisiologia , Células CHO , Cromatografia de Afinidade , Cricetinae , Cricetulus , Primers do DNA , Lactococcus lactis/genética , Camundongos , Microscopia de Fluorescência , Plasmídeos/genética
5.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-626562

RESUMO

Aims: Lactobacillus sp. has capability of producing an array of bioactive metabolites that exhibit probiotic effects. Therefore, the objective of this study was to determine the cytotoxicity effect of proteinaceous postbiotic metabolites (PPM) produced by Lactobacillus plantarum I-UL4 cultivated in different media composition on MCF-7 breast cancer cell. Methodology and results: L. plantarum I-UL4 was cultivated in yeast extract and modified de Man, Rogosa and Sharpe broth containing Tween 80 (CRMRS+T80) or without Tween-80 (CRMRS-T80). Human breast adenocarcinoma cell (MCF-7) was employed as cancer cell in this study. Cytotoxicity and antiproliferative effects of PPM were determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl Tetrazolium Bromide assay and Trypan Blue Dye Exclusion assay, whereas Acridine Orange/Propidium Iodide staining was employed to determine the cytotoxicity mechanism. PPM produced in CRMRS+T80 exerted cytotoxicity in a time and dose dependent manner that was selective towards MCF-7 cancer cell. Profound cytotoxicity with the lowest IC50 concentration of 10.83 µg was detected at 72 h of incubation, whereas the most potent antiproliferative effect revealed by the lowest viable cell population was observed at 24 h of incubation. PPM cultivated in CRMRS+T80 induced 80.87% of apoptotic MCF-7 cells at 48 h of incubation. Conclusion, significance and impact of study: PPM of L. plantarum I-UL4 cultivated in different media composition induced different levels of MCF-7 cancer cell death. The percentage of apoptotic MCF-7 cells treated with PPM cultivated in CRMRS+T80 increased significantly (p < 0.05) from 24 to 48 h of incubation. The results obtained in this study have revealed the potential of PPM produced by L. plantarum I-UL4 as human health supplement and as anticancer preventive agent. Keywords: Lactobacillus plantarum I-UL4; cytotoxic effect; proteinaceous postbiotic metabolites; media composition; breast cancer


Assuntos
Lactobacillus , Probióticos
6.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-626558

RESUMO

Aims: Postbiotic metabolites are metabolic compounds produced by probiotic lactic acid bacteria. These compounds produced by Lactobacillus sp. have been shown to be effective substitutes for in-feed antibiotic in livestock due to their broad inhibitory activity. Therefore, the aim of this study was to determine the effects of various carbon and nitrogen sources on the bacteriocin-inhibitory activity of postbiotic metabolites produced by Lactobacillus plantarum I-UL4. Methodology and results: The effects of various combinations of carbon and nitrogen sources on the bacteriocininhibitory activity (expressed as modified bacteriocin activity, MAU/mL) of postbiotic metabolites produced by L. plantarum I-UL4 were determined in basal media without micronutrients. The combination of glucose (20 g/L) and yeast extract (22 g/L) gave the best bacteriocin-inhibitory activity as compared to other combinations. Maximum bacteriocininhibitory activity of 1440 MAU/mL was achieved when 36.20 g/L of yeast extract was added as the sole nitrogen source in modified de Man, Rogosa and Sharpe (MRS) medium. The glucose concentration was further optimised to enhance the bacteriocin-inhibitory activity of the postbiotic metabolites. Lower bacteriocin-inhibitory activity was observed at 5, 10, 15 and 40 g/L in comparison to 20 g/L of glucose. Conclusion, significance and impact of study: Maximum bacteriocin-inhibitory activity of postbiotic metabolites was achieved at 1440 MAU/mL when 20 g/L of glucose and 36.20 g/L of yeast extract were added as the sole carbon and nitrogen sources respectively in the modified MRS medium. Optimisation of other micronutrients present in MRS media is necessary to further enhance the bacteriocin-inhibitory activity of postbiotic metabolites produced by L. plantarum IUL4.


Assuntos
Lactobacillus
7.
Microbiol Res ; 167(9): 550-7, 2012 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-22281521

RESUMO

In this study, PHA biosynthesis operon of Comamonas sp. EB172, an acid-tolerant strain, consisting of three genes encoding acetyl-CoA acetyltransferase (phaA(Co) gene, 1182 bp), acetoacetyl-CoA reductase (phaB(Co) gene, 738 bp) and PHA synthase, class I (phaC(Co) gene, 1694 bp) were identified. Sequence analysis of the phaA(Co), phaB(Co) and phaC(Co) genes revealed that they shared more than 85%, 89% and 69% identity, respectively, with orthologues from Delftia acidovorans SPH-1 and Acidovorax ebreus TPSY. The PHA biosynthesis genes (phaC(Co) and phaAB(Co)) were successfully cloned in a heterologous host, Escherichia coli JM109. E. coli JM109 transformants harbouring pGEM'-phaC(Co)AB(Re) and pGEM'-phaC(Re)AB(Co) were shown to be functionally active synthesising 33 wt.% and 17 wt.% of poly(3-hydroxybutyrate) [P(3HB)]. E. coli JM109 transformant harbouring the three genes from the acid-tolerant Comamonas sp. EB172 (phaCAB(Co)) under the control of native promoter from Cupriavidus necator, in vivo polymerised P(3HB) when fed with glucose and volatile mixed organic acids (acetic acid:propionic acid:n-butyric acid) in ration of 3:1:1, respectively. The E. coli JM109 transformant harbouring phaCAB(Co) could accumulate P(3HB) at 2g/L of propionic acid. P(3HB) contents of 40.9% and 43.6% were achieved by using 1% of glucose and mixed organic acids, respectively.


Assuntos
Acetil-CoA C-Acetiltransferase/genética , Aciltransferases/genética , Oxirredutases do Álcool/genética , Proteínas de Bactérias/genética , Comamonas/enzimologia , Escherichia coli/genética , Expressão Gênica , Acetil-CoA C-Acetiltransferase/química , Acetil-CoA C-Acetiltransferase/metabolismo , Aciltransferases/química , Aciltransferases/metabolismo , Oxirredutases do Álcool/química , Oxirredutases do Álcool/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Clonagem Molecular , Comamonas/química , Comamonas/genética , Escherichia coli/metabolismo , Glucose/metabolismo , Hidroxibutiratos/metabolismo , Dados de Sequência Molecular , Óperon , Poliésteres/metabolismo , Alinhamento de Sequência
8.
J Mol Microbiol Biotechnol ; 22(6): 361-72, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23295307

RESUMO

Cyclodextrin glucanotransferase (CGTase) is an extracellular enzyme which catalyzes the formation of cyclodextrin from starch. The production of CGTase using lactic acid bacterium is an attractive alternative and safer strategy to produce CGTase. In this study, we report the construction of genetically modified Lactococcus lactis strains harboring plasmids that secrete the Bacillus sp. G1 ß-CGTase, with the aid of the signal peptides (SPs) SPK1, USP45 and native SP (NSP). Three constructed vectors, pNZ:NSP:CGT, pNZ:USP:CGT and pNZ:SPK1:CGT, were developed in this study. Each vector harbored a different SP fused to the CGTase. The formation of halo zones on starch plates indicated the production and secretion of ß-CGTase by the recombinants. The expression of this enzyme is shown by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and zymogram analysis. A band size of ∼75 kDa corresponding to ß-CGTase is identified in the intracellular and the extracellular environments of the host after medium modification. The replacement of glucose by starch in the medium was shown to induce ß-CGTase production in L. lactis. Although ß-CGTase production is comparatively low in NZ:SPK1:CGT, the SP SPK1 was shown to have higher secretion efficiency compared to the other SPs used in this study.


Assuntos
Glucosiltransferases/genética , Glucosiltransferases/metabolismo , Lactococcus lactis/enzimologia , Lactococcus lactis/genética , Sinais Direcionadores de Proteínas , Bacillus/enzimologia , Bacillus/genética , Eletroforese , Vetores Genéticos , Glucosiltransferases/química , Engenharia Metabólica , Peso Molecular , Organismos Geneticamente Modificados , Plasmídeos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Amido/metabolismo
9.
PLoS One ; 7(12): e52444, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300671

RESUMO

Isoprenoids are a large and diverse group of metabolites with interesting properties such as flavour, fragrance and therapeutic properties. They are produced via two pathways, the mevalonate pathway or the 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. While plants are the richest source of isoprenoids, they are not the most efficient producers. Escherichia coli and yeasts have been extensively studied as heterologous hosts for plant isoprenoids production. In the current study, we describe the usage of the food grade Lactococcus lactis as a potential heterologous host for the production of sesquiterpenes from a local herbaceous Malaysian plant, Persicaria minor (synonym Polygonum minus). A sesquiterpene synthase gene from P. minor was successfully cloned and expressed in L. lactis. The expressed protein was identified to be a ß-sesquiphellandrene synthase as it was demonstrated to be functional in producing ß-sesquiphellandrene at 85.4% of the total sesquiterpenes produced based on in vitro enzymatic assays. The recombinant L. lactis strain developed in this study was also capable of producing ß-sesquiphellandrene in vivo without exogenous substrates supplementation. In addition, overexpression of the strain's endogenous 3-hydroxy-3-methylglutaryl coenzyme-A reductase (HMGR), an established rate-limiting enzyme in the eukaryotic mevalonate pathway, increased the production level of ß-sesquiphellandrene by 1.25-1.60 fold. The highest amount achieved was 33 nM at 2 h post-induction.


Assuntos
Hidroximetilglutaril-CoA Redutases/genética , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Engenharia Metabólica/métodos , Ácido Mevalônico/metabolismo , Polygonaceae/genética , Sesquiterpenos/metabolismo , Alquil e Aril Transferases/biossíntese , Alquil e Aril Transferases/genética , Clonagem Molecular , Expressão Gênica , Hidroximetilglutaril-CoA Redutases/biossíntese , Plasmídeos/genética , Polygonaceae/enzimologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética
10.
Microb Cell Fact ; 10: 28, 2011 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-21518457

RESUMO

BACKGROUND: Many plasmid-harbouring strains of Lactococcus lactis have been isolated from milk and other sources. Plasmids of Lactococcus have been shown to harbour antibiotic resistance genes and those that express some important proteins. The generally regarded as safe (GRAS) status of L. lactis also makes it an attractive host for the production of proteins that are beneficial in numerous applications such as the production of biopharmaceutical and nutraceutical. In the present work, strains of L. lactis were isolated from cow's milk, plasmids were isolated and characterised and one of the strains was identified as a potential new lactococcal host for the expression of heterologous proteins. RESULTS: Several bacterial strains were isolated from cow's milk and eight of those were identified as Lactococcus lactis by 16S rRNA sequence analysis. Antibiotic susceptibility tests that were carried out showed that 50% of the isolates had almost identical antibiotic resistance patterns compared to the control strains MG1363 and ATCC 11454. Plasmid profiling results indicated the lack of low molecular weight plasmids for strain M4. Competent L. lactis M4 and MG1363 were prepared and electrotransformed with several lactococcal plasmids such as pMG36e, pAR1411, pAJ01 and pMG36e-GFP. Plasmid isolation and RE analyses showed the presence of these plasmids in both M4 and the control strain after several generations, indicating the ability of M4 to maintain heterologous plasmids. SDS-PAGE and Western blot analyses also confirmed the presence of GFP, demonstrating the potential of heterologous protein expression in M4. CONCLUSIONS: Based on the 16S rRNA gene molecular analysis, eight Gram-positive cocci milk isolates were identified as L. lactis subsp. lactis. One of the strains, L. lactis M4 was able to maintain transformed low molecular weight plasmid vectors and expressed the GFP gene. This strain has the potential to be developed into a new lactococcal host for the expression of heterologous proteins.


Assuntos
Lactococcus lactis/metabolismo , Proteínas Recombinantes/biossíntese , Animais , Bovinos , Testes de Sensibilidade a Antimicrobianos por Disco-Difusão , Proteínas de Fluorescência Verde/biossíntese , Proteínas de Fluorescência Verde/genética , Lactococcus lactis/crescimento & desenvolvimento , Lactococcus lactis/isolamento & purificação , Leite/microbiologia , Plasmídeos/química , Plasmídeos/metabolismo , RNA Ribossômico 16S/química , RNA Ribossômico 16S/metabolismo , Proteínas Recombinantes/genética
11.
BMC Plant Biol ; 8: 62, 2008 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-18507865

RESUMO

BACKGROUND: Oil palm (Elaeis guineensis Jacq.) is one of the most important oil bearing crops in the world. However, genetic improvement of oil palm through conventional breeding is extremely slow and costly, as the breeding cycle can take up to 10 years. This has brought about interest in vegetative propagation of oil palm. Since the introduction of oil palm tissue culture in the 1970s, clonal propagation has proven to be useful, not only in producing uniform planting materials, but also in the development of the genetic engineering programme. Despite considerable progress in improving the tissue culture techniques, the callusing and embryogenesis rates from proliferating callus cultures remain very low. Thus, understanding the gene diversity and expression profiles in oil palm tissue culture is critical in increasing the efficiency of these processes. RESULTS: A total of 12 standard cDNA libraries, representing three main developmental stages in oil palm tissue culture, were generated in this study. Random sequencing of clones from these cDNA libraries generated 17,599 expressed sequence tags (ESTs). The ESTs were analysed, annotated and assembled to generate 9,584 putative unigenes distributed in 3,268 consensi and 6,316 singletons. These unigenes were assigned putative functions based on similarity and gene ontology annotations. Cluster analysis, which surveyed the relatedness of each library based on the abundance of ESTs in each consensus, revealed that lipid transfer proteins were highly expressed in embryogenic tissues. A glutathione S-transferase was found to be highly expressed in non-embryogenic callus. Further analysis of the unigenes identified 648 non-redundant simple sequence repeats and 211 putative full-length open reading frames. CONCLUSION: This study has provided an overview of genes expressed during oil palm tissue culture. Candidate genes with expression that are modulated during tissue culture were identified. However, in order to confirm whether these genes are suitable as early markers for embryogenesis, the genes need to be tested on earlier stages of tissue culture and a wider range of genotypes. This collection of ESTs is an important resource for genetic and genome analyses of the oil palm, particularly during tissue culture development.


Assuntos
Arecaceae/genética , Etiquetas de Sequências Expressas , Perfilação da Expressão Gênica , Arecaceae/embriologia , Arecaceae/crescimento & desenvolvimento , Northern Blotting , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Biblioteca Gênica , Dados de Sequência Molecular , Folhas de Planta/citologia , Folhas de Planta/genética , Técnicas de Cultura de Tecidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...