Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791516

RESUMO

Relapse to alcohol abuse, often caused by cue-induced alcohol craving, is a major challenge in alcohol addiction treatment. Therefore, disrupting the cue-alcohol memories can suppress relapse. Upon retrieval, memories transiently destabilize before they reconsolidate in a process that requires protein synthesis. Evidence suggests that the mammalian target of rapamycin complex 1 (mTORC1), governing the translation of a subset of dendritic proteins, is crucial for memory reconsolidation. Here, we explored the involvement of two regulatory pathways of mTORC1, phosphoinositide 3-kinase (PI3K)-AKT and extracellular regulated kinase 1/2 (ERK1/2), in the reconsolidation process in a rat (Wistar) model of alcohol self-administration. We found that retrieval of alcohol memories using an odor-taste cue increased ERK1/2 activation in the amygdala, while the PI3K-AKT pathway remained unaffected. Importantly, ERK1/2 inhibition after alcohol memory retrieval impaired alcohol-memory reconsolidation and led to long-lasting relapse suppression. Attenuation of relapse was also induced by post-retrieval administration of lacosamide, an inhibitor of collapsin response mediator protein-2 (CRMP2)-a translational product of mTORC1. Together, our findings indicate the crucial role of ERK1/2 and CRMP2 in the reconsolidation of alcohol memories, with their inhibition as potential treatment targets for relapse prevention.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular , Proteínas do Tecido Nervoso , Animais , Ratos , Masculino , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Ratos Wistar , Memória/efeitos dos fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Etanol , Alcoolismo/metabolismo , Alcoolismo/tratamento farmacológico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Recidiva , Tonsila do Cerebelo/metabolismo , Tonsila do Cerebelo/efeitos dos fármacos , Consolidação da Memória/efeitos dos fármacos , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Autoadministração , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-31964648

RESUMO

Neurotrophic growth factors were originally characterized for their support in neuronal differentiation, outgrowth, and survival during development. However, it has been acknowledged that they also play a vital role in the adult brain. Abnormalities in growth factors have been implicated in a variety of neurological and psychiatric disorders, including alcohol use disorder (AUD). This work focuses on the interaction between alcohol and growth factors. We review literature suggesting that several growth factors play a unique role in the regulation of alcohol consumption, and that breakdown in these growth factor systems is linked to the development of AUD. Specifically, we focus on the brain-derived neurotrophic factor (BDNF), glial cell line-derived neurotrophic factor (GDNF), fibroblast growth factor 2 (FGF2), and insulin growth factor 1 (IGF-1). We also review the literature on the potential role of midkine (MDK) and pleiotrophin (PTN) and their receptor, anaplastic lymphoma kinase (ALK), in AUD. We show that alcohol alters the expression of these growth factors or their receptors in brain regions previously implicated in addiction, and that manipulations on these growth factors and their downstream signaling can affect alcohol-drinking behaviors in animal models. We conclude that there is a need for translational and clinical research to assess the therapeutic potential of new pharmacotherapies targeting these systems.


Assuntos
Alcoolismo/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado de Linhagem de Célula Glial/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica , Humanos , RNA Mensageiro/metabolismo , Transdução de Sinais/fisiologia
3.
Neuropsychopharmacology ; 44(2): 415-424, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30008470

RESUMO

Neuroadaptations in the brain reward system caused by excessive alcohol intake, lead to drinking escalation and alcohol use disorder phenotypes. Activity-dependent neuroprotective protein (ADNP) is crucial for brain development, and is implicated in neural plasticity in adulthood. Here, we discovered that alcohol exposure regulates Adnp expression in the mesolimbic system, and that Adnp keeps alcohol drinking in moderation, in a sex-dependent manner. Specifically, Sub-chronic alcohol treatment (2.5 g/kg/day for 7 days) increased Adnp mRNA levels in the dorsal hippocampus in both sexes, and in the nucleus accumbens of female mice, 24 h after the last alcohol injection. Long-term voluntary consumption of excessive alcohol quantities (~10-15 g/kg/24 h, 5 weeks) increased Adnp mRNA in the hippocampus of male mice immediately after an alcohol-drinking session, but the level returned to baseline after 24 h of withdrawal. In contrast, excessive alcohol consumption in females led to long-lasting reduction in hippocampal Adnp expression. We further tested the regulatory role of Adnp in alcohol consumption, using the Adnp haploinsufficient mouse model. We found that Adnp haploinsufficient female mice showed higher alcohol consumption and preference, compared to Adnp intact females, whereas no genotype difference was observed in males. Importantly, daily intranasal administration of the ADNP-snippet drug candidate NAP normalized alcohol consumption in Adnp haploinsufficient females. Finally, female Adnp haploinsufficient mice showed a sharp increase in alcohol intake after abstinence, suggesting that Adnp protects against relapse in females. The current data suggest that ADNP is a potential novel biomarker and negative regulator of alcohol-drinking behaviors.


Assuntos
Consumo de Bebidas Alcoólicas/genética , Etanol/farmacologia , Expressão Gênica/efeitos dos fármacos , Hipocampo/efeitos dos fármacos , Proteínas de Homeodomínio/genética , Proteínas do Tecido Nervoso/genética , Consumo de Bebidas Alcoólicas/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Haploinsuficiência , Hipocampo/metabolismo , Proteínas de Homeodomínio/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Fatores Sexuais
4.
Sci Rep ; 7(1): 2479, 2017 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-28559549

RESUMO

Alcohol and nicotine are the two most commonly-abused substances and are often used together. Nicotine enhances alcohol-drinking behaviors in humans and in animals, and was suggested to enhance the reinforcing properties of other reinforcers. Here, we show that nicotine-associated environment, rather than nicotine itself, enhances alcohol intake in rats. Adolescent rats received repeated intermittent injections of nicotine (0.4 mg/kg, i.p., 5 injections, every 3rd day) or saline. The injection was paired with their home cage, or with the subsequent alcohol self-administration context. Rats were then trained to self-administer 20% alcohol. Nicotine given in the home cage did not alter subsequent alcohol intake. However, pairing nicotine with the operant chamber during adolescence led to a long-lasting increased alcohol self-administration in adulthood, compared to nicotine pre-treatment in other contexts. This effect persisted 3 months after nicotine cessation, in a relapse test after abstinence. Furthermore, re-exposure to the nicotine-associated context in adult rats led to a decrease in glial cell line-derived neurotrophic factor (Gdnf) mRNA expression in the ventral tegmental area, an effect that leads to increased alcohol consumption, as we have previously reported. Our findings suggest that retrieval of nicotine-associated contextual memories from adolescence may gate alcohol intake in adulthood, with a possible involvement of GDNF.


Assuntos
Consumo de Bebidas Alcoólicas/fisiopatologia , Álcoois/efeitos adversos , Nicotina/efeitos adversos , Transtornos Relacionados ao Uso de Substâncias/fisiopatologia , Adolescente , Consumo de Bebidas Alcoólicas/epidemiologia , Consumo de Bebidas Alcoólicas/genética , Álcoois/administração & dosagem , Animais , Condicionamento Operante , Regulação da Expressão Gênica/efeitos dos fármacos , Fator Neurotrófico Derivado de Linhagem de Célula Glial/genética , Humanos , Masculino , Nicotina/administração & dosagem , Ratos , Autoadministração , Transtornos Relacionados ao Uso de Substâncias/epidemiologia , Transtornos Relacionados ao Uso de Substâncias/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...