Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 14: 1295852, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143912

RESUMO

Background: Metabolite-based sensors are attractive and highly valued for monitoring physiological parameters during rest and/or during physical activities. Owing to their molecular composition consisting of nucleic acids, proteins, and metabolites, extracellular vesicles (EVs) have become acknowledged as a novel tool for disease diagnosis. However, the evidence for sweat related EVs delivering information of physical and recovery states remains to be addressed. Methods: Taking advantage of our recently published methodology allowing the enrichment and isolation of sweat EVs from clinical patches, we investigated the metabolic load of sweat EVs in healthy participants exposed to exercise test or recovery condition. -Ten healthy volunteers (-three females and -seven males) were recruited to participate in this study. During exercise test and recovery condition, clinical patches were attached to participants' skin, on their back. Following exercise test or recovery condition, the patches were carefully removed and proceed for sweat EVs isolation. To explore the metabolic composition of sweat EVs, a targeted global metabolomics profiling of 41 metabolites was performed. Results: Our results identified seventeen metabolites in sweat EVs. These are associated with amino acids, glutamate, glutathione, fatty acids, creatine, and glycolysis pathways. Furthermore, when comparing the metabolites' levels in sweat EVs isolated during exercise to the metabolite levels in sweat EVs collected after recovery, our findings revealed a distinct metabolic profiling of sweat EVs. Furthermore, the level of these metabolites, mainly myristate, may reflect an inverse correlation with blood glucose, heart rate, and respiratory rate levels. Conclusion: Our data demonstrated that sweat EVs can be purified using routinely used clinical patches during physical activity, setting the foundations for larger-scale clinical cohort work. Furthermore, the metabolites identified in sweat EVs also offer a realistic means to identify relevant sport performance biomarkers. This study thus provides proof-of-concept towards a novel methodology that will focus on the use of sweat EVs and their metabolic composition as a non-invasive approach for developing the next-generation of sport wearable sensors.

2.
Int J Mol Sci ; 24(8)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37108669

RESUMO

Cell-secreted extracellular vesicles (EVs), carrying components such as RNA, DNA, proteins, and metabolites, serve as candidates for developing non-invasive solutions for monitoring health and disease, owing to their capacity to cross various biological barriers and to become integrated into human sweat. However, the evidence for sweat-associated EVs providing clinically relevant information to use in disease diagnostics has not been reported. Developing cost-effective, easy, and reliable methodologies to investigate EVs' molecular load and composition in the sweat may help to validate their relevance in clinical diagnosis. We used clinical-grade dressing patches, with the aim being to accumulate, purify and characterize sweat EVs from healthy participants exposed to transient heat. The skin patch-based protocol described in this paper enables the enrichment of sweat EVs that express EV markers, such as CD63. A targeted metabolomics study of the sweat EVs identified 24 components. These are associated with amino acids, glutamate, glutathione, fatty acids, TCA, and glycolysis pathways. Furthermore, as a proof-of-concept, when comparing the metabolites' levels in sweat EVs isolated from healthy individuals with those of participants with Type 2 diabetes following heat exposure, our findings revealed that the metabolic patterns of sweat EVs may be linked with metabolic changes. Moreover, the concentration of these metabolites may reflect correlations with blood glucose and BMI. Together our data revealed that sweat EVs can be purified using routinely used clinical patches, setting the foundations for larger-scale clinical cohort work. Furthermore, the metabolites identified in sweat EVs also offer a realistic means to identify relevant disease biomarkers. This study thus provides a proof-of-concept towards a novel methodology that will focus on the use of the sweat EVs and their metabolites as a non-invasive approach, in order to monitor wellbeing and changes in diseases.


Assuntos
Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Humanos , Suor , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/metabolismo , Vesículas Extracelulares/metabolismo , Metabolômica , Transporte Biológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...