Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Bioallied Sci ; 15(3): 158-163, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705859

RESUMO

Pimpinella pruatjan Molk is native to Java and well known as aphrodisiac in traditional medicine. A water-boiled extract of the plant has been used in the treatment of erectile dysfunction (ED). No study has been found on the phytochemical constituents and identification of corresponding biological activities in water and polar extract. This study is aimed to identify phytoconstituents of a decoction and ethanol extract from the aerial parts of P. pruatjan Molk. Liquid chromatography-tandem mass spectroscopy (LC-MS/MS) was used to analyze and predict the bioactive compounds in both extracts. LC-MS/MS revealed both extracts contained two important compounds: Luteolin-7-O-ß-D glucopyranoside and Undulatoside A. Luteolin and Luteolin glucoside are also found in P.anisum L. Lutein 7-O glucoside was found in water extract, while more bioactive compounds, including populnin, 3,5-O-dicaffeoylquinic acid, quercetin-3'- O glucoside, methylophiopogononeone-A, kaempferol-7-O-α-L-arabinofuranoside, and 7-hydroxy-3,5,6,3',4'- pentamethoxyflavone, were found in ethanol extract. Accumulation of flavonoids, phenols, phenylpropanoids, alkaloids, and furanochromone in low quantities was observed in both extracts. This is the first report providing evidence justifying its use as a traditional medicine. Further investigation into the pharmacology mechanism of action is required.

2.
Molecules ; 27(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35807260

RESUMO

Moringa oleifera (M. oleifera) leaves are rich in nutrients and antioxidant compounds that can be consumed to prevent and overcome malnutrition. The water infusion of its leaf is the easiest way to prepare the herbal drink. So far, no information is available on the antioxidant, antimutagenic, and antivirus capacities of this infusion. This study aimed to determine the composition of the bioactive compounds in M. oleifera leaf infusion, measuring for antioxidant and antimutagenic activity, and evaluating any ability to inhibit the SARS-CoV-2 main protease (Mpro). The first two objectives were carried out in vitro. The third objective was carried out in silico. The phytochemical analysis of M. oleifera leaf infusion was carried out using liquid chromatography-mass spectrometry (LC-MS). Antioxidant activity was measured as a factor of the presence of the free radical 2,2-diphenyl-1-picrylhydrazyl (DPPH). The antimutagenicity of M. oleifera leaf powder infusion was measured using the plasmid pBR322 (treated free radical). The interaction between bioactive compounds and Mpro of SARS-CoV-2 was analyzed via molecular docking. The totals of phenolic compound and flavonoid compound from M. oleifera leaf infusion were 1.780 ± 5.00 µg gallic acid equivalent/g (µg GAE/g) and 322.91 ± 0.98 µg quercetin equivalent/g (µg QE/g), respectively. The five main bioactive compounds involved in the infusion were detected by LC-MS. Three of these were flavonoid glucosides, namely quercetin 3-O-glucoside, kaempferol 3-O-neohesperidoside, and kaempferol 3-α-L-dirhamnosyl-(1→4)-ß-D-glucopyranoside. The other two compounds were undulatoside A, which belongs to chromone-derived flavonoids, and gentiatibetine, which belongs to alkaloids. The antioxidant activity of M. oleifera leaf infusion was IC50 8.19 ± 0.005 µg/mL, which is stronger than the standard butylated hydroxytoluene (BHT) IC50 11.60 ± 0.30 µg/mL. The infusion has an antimutagenic effect and therefore protects against deoxyribonucleic acid (DNA) damage. In silico studies showed that the five main bioactive compounds have an antiviral capacity. There were strong energy bonds between Mpro molecules and gentiatibetine, quercetin, undulatoside A, kaempferol 3-o-neohesperidoside, and quercetin 3-O-glucoside. Their binding energy values are -5.1, -7.5, -7.7, -5.7, and -8.2 kcal/mol, respectively. Their antioxidant activity, ability to maintain DNA integrity, and antimutagenic properties were more potent than the positive controls. It can be concluded that leaf infusion of M. oleifera does provide a promising herbal drink with good antioxidant, antimutagenic, and antivirus capacities.


Assuntos
Tratamento Farmacológico da COVID-19 , Moringa oleifera , Antioxidantes/química , Antivirais/análise , Antivirais/farmacologia , DNA/análise , Flavonoides/química , Glucosídeos/análise , Simulação de Acoplamento Molecular , Moringa oleifera/química , Compostos Fitoquímicos/análise , Compostos Fitoquímicos/farmacologia , Extratos Vegetais/química , Folhas de Planta/química , Quercetina/análise , Quercetina/farmacologia , SARS-CoV-2
3.
Int J Food Sci ; 2020: 3436940, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33029485

RESUMO

Premna serratifolia, commonly known as Arogo in Tentena-Sulawesi, is a popular vegetable. As a promising herbal tea and food ingredient, further investigation is required to find the best knowledge for medicinal use of P. serratifolia leaves. This research investigated the antioxidant activity of the ethanol (EEPS) and water (WEPS) extracts of P. serratifolia leaves, based on their scavenging activities on DPPH radicals and their reducing capacities (CuPRAC, total antioxidant/phosphomolybdenum, and ferric thiocyanate reducing power assays). The DNA-protecting effect by EEPS was tested using pBR322 plasmid DNA against •OH radical-induced damage. The inhibition potentials of both extracts against several enzymes related to metabolic diseases (α-glucosidase, α-amylase, xanthine oxidase, and protease) were evaluated. The phytochemical analysis was conducted by an LC-QTOF-MS/MS technique. EEPS proved to be a better antioxidant and had higher phenolic content compared to WEPS. EEPS demonstrated a protective effect on DNA with recovery percentage linearly correlated with EEPS concentrations. Strong inhibition on α-glucosidase and α-amylase was observed for EEPS; however, EEPS and WEPS showed weak inhibitions on xanthine oxidase and protease. LC-QTOF-MS/MS analysis identified seven main components in EEPS, namely scroside E, forsythoside A and forsythoside B, lavandulifolioside, diosmin, nobilin D, campneoside I, and isoacteoside. These components may be responsible for the observed enzymes inhibitions and antioxidant properties. Premna serratifolia leaves can be an appropriate choice for the development of nutraceutical and drug preparations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...