Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(6): 4189-4199, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29362749

RESUMO

The effect of confinement on the equilibrium reactive system containing nitrogen dioxide and dinitrogen tetroxide is studied by molecular simulation and the reactive Monte Carlo (RxMC) approach. The bulk-phase reaction was successfully reproduced and five all-silica zeolites (i.e. FAU, FER, MFI, MOR, and TON) with different topologies were selected to study their adoption behavior. Dinitrogen tetroxide showed a stronger affinity than nitrogen dioxide in all the zeolites due to size effects, but exclusive adsorption sites in MOR allowed the adsorption of nitrogen dioxide with no competition at these sites. From the study of the adsorption isotherms and isobars of the reacting mixture, confinement enhanced the formation of dimers over the full range of pressure and temperature, finding the largest deviations from bulk fractions at low temperature and high pressure. The channel size and shape of the zeolite have a noticeable influence on the dinitrogen tetroxide formation, being more important in MFI, closely followed by TON and MOR, and finally FER and FAU. Preferential adsorption sites in MOR lead to an unusually strong selective adsorption towards nitrogen dioxide, demonstrating that the topological structure has a crucial influence on the composition of the mixture and must be carefully considered in systems containing nitrogen dioxide.

2.
Comput Methods Biomech Biomed Engin ; 20(3): 231-241, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27494073

RESUMO

The main aim of this research is to numerically obtain the permeability coefficient in the cylindrical scaffolds. For this purpose, a mathematical analysis was performed to derive an equation for desired porosity in terms of morphological parameters. Then, the considered cylindrical geometries were modeled and the permeability coefficient was calculated according to the velocity and pressure drop values based on the Darcy's law. In order to validate the accuracy of the present numerical solution, the obtained permeability coefficient was compared with the published experimental data. It was observed that this model can predict permeability with the utmost accuracy. Then, the effect of geometrical parameters including porosity, scaffold pore structure, unit cell size, and length of the scaffolds as well as entrance mass flow rate on the permeability of porous structures was studied. Furthermore, a parametric study with scaling laws analysis of sample length and mass flow rate effects on the permeability showed good fit to the obtained data. It can be concluded that the sensitivity of permeability is more noticeable at higher porosities. The present approach can be used to characterize and optimize the scaffold microstructure due to the necessity of cell growth and transferring considerations.


Assuntos
Engenharia Tecidual/métodos , Alicerces Teciduais/química , Osso e Ossos/patologia , Simulação por Computador , Humanos , Modelos Teóricos , Permeabilidade , Porosidade , Pressão , Reprodutibilidade dos Testes
3.
Math Biosci ; 283: 38-47, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27840282

RESUMO

In the present study, the analytical study on blood flow containing nanoparticles through porous blood vessels is done in presence of magnetic field using Homotopy Perturbation Method (HPM). Blood is considered as the third grade non- Newtonian fluid containing nanoparticles. Viscosity of nanofluid is determined by Constant, Reynolds' and Vogel's models. Some efforts have been made to show the reliability and performance of the present method compared with the numerical method, Runge-Kutta fourth-order. The results reveal that the HPM can achieve suitable results in predicting the solution of these problems. Moreover, the influence of some physical parameters such as pressure gradient, Brownian motion parameter, thermophoresis parameter, magnetic filed intensity and Grashof number on temperature, velocity and nanoparticles concentration profiles is declared in this research. The results reveal that the increase in the pressure gradient and Thermophoresis parameter as well as decrease in the Brownian motion parameter cause the rise in the velocity profile. Furthermore, either increase in Thermophoresis or decrease in Brownian motion parameters results in enhancement in nanoparticle concentration. The highest value of velocity is observed when the Vogel's Model is used for viscosity.


Assuntos
Vasos Sanguíneos , Sangue , Fenômenos Magnéticos , Modelos Teóricos , Nanopartículas , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...