Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
6.
Sci Total Environ ; 839: 156230, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35643144

RESUMO

Marine eutrophication is a pervasive and growing threat to global sustainability. Macroalgal cultivation is a promising circular economy solution to achieve nutrient reduction and food security. However, the location of production hotspots is not well known. In this paper the production potential of macroalgae of high commercial value was predicted across the Baltic Sea region. In addition, the nutrient limitation within and adjacent to macroalgal farms was investigated to suggest optimal site-specific configuration of farms. The production potential of Saccharina latissima was largely driven by salinity and the highest production yields are expected in the westernmost Baltic Sea areas where salinity is >23. The direct and interactive effects of light availability, temperature, salinity and nutrient concentrations regulated the predicted changes in the production of Ulva intestinalis and Fucus vesiculosus. The western and southern Baltic Sea exhibited the highest farming potential for these species, with promising areas also in the eastern Baltic Sea. Macroalgal farming did not induce significant nutrient limitation. The expected spatial propagation of nutrient limitation caused by macroalgal farming was less than 100-250 m. Higher propagation distances were found in areas of low nutrient and low water exchange (e.g. offshore areas in the Baltic Proper) and smaller distances in areas of high nutrient and high water exchange (e.g. western Baltic Sea and Gulf of Riga). The generated maps provide the most sought-after input to support blue growth initiatives that foster the sustainable development of macroalgal cultivation and reduction of in situ nutrient loads in the Baltic Sea.


Assuntos
Fucus , Alga Marinha , Países Bálticos , Eutrofização , Nutrientes , Oceanos e Mares , Água
7.
Plant Physiol ; 188(4): 2039-2058, 2022 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-35043967

RESUMO

Flooding causes severe crop losses in many parts of the world. Genetic variation in flooding tolerance exists in many species; however, there are few examples for the identification of tolerance genes and their underlying function. We conducted a genome-wide association study (GWAS) in 387 Arabidopsis (Arabidopsis thaliana) accessions. Plants were subjected to prolonged submergence followed by desubmergence, and seven traits (score, water content, Fv/Fm, and concentrations of nitrate, chlorophyll, protein, and starch) were quantified to characterize their acclimation responses. These traits showed substantial variation across the range of accessions. A total of 35 highly significant single-nucleotide polymorphisms (SNPs) were identified across the 20 GWA datasets, pointing to 22 candidate genes, with functions in TCA cycle, DNA modification, and cell division. Detailed functional characterization of one candidate gene, ACONITASE3 (ACO3), was performed. Chromatin immunoprecipitation followed by sequencing showed that a single nucleotide polymorphism in the ACO3 promoter co-located with the binding site of the master regulator of retrograde signaling ANAC017, while subcellular localization of an ACO3-YFP fusion protein confirmed a mitochondrial localization during submergence. Analysis of mutant and overexpression lines determined changes in trait parameters that correlated with altered submergence tolerance and were consistent with the GWAS results. Subsequent RNA-seq experiments suggested that impairing ACO3 function increases the sensitivity to submergence by altering ethylene signaling, whereas ACO3 overexpression leads to tolerance by metabolic priming. These results indicate that ACO3 impacts submergence tolerance through integration of carbon and nitrogen metabolism via the mitochondrial TCA cycle and impacts stress signaling during acclimation to stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Aclimatação/genética , Adaptação Fisiológica/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Estudo de Associação Genômica Ampla
8.
Plant Physiol ; 186(4): 1859-1877, 2021 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-34618107

RESUMO

Mitochondria are tightly embedded within metabolic and regulatory networks that optimize plant performance in response to environmental challenges. The best-known mitochondrial retrograde signaling pathway involves stress-induced activation of the transcription factor NAC DOMAIN CONTAINING PROTEIN 17 (ANAC017), which initiates protective responses to stress-induced mitochondrial dysfunction in Arabidopsis (Arabidopsis thaliana). Posttranslational control of the elicited responses, however, remains poorly understood. Previous studies linked protein phosphatase 2A subunit PP2A-B'γ, a key negative regulator of stress responses, with reversible phosphorylation of ACONITASE 3 (ACO3). Here we report on ACO3 and its phosphorylation at Ser91 as key components of stress regulation that are induced by mitochondrial dysfunction. Targeted mass spectrometry-based proteomics revealed that the abundance and phosphorylation of ACO3 increased under stress, which required signaling through ANAC017. Phosphomimetic mutation at ACO3-Ser91 and accumulation of ACO3S91D-YFP promoted the expression of genes related to mitochondrial dysfunction. Furthermore, ACO3 contributed to plant tolerance against ultraviolet B (UV-B) or antimycin A-induced mitochondrial dysfunction. These findings demonstrate that ACO3 is both a target and mediator of mitochondrial dysfunction signaling, and critical for achieving stress tolerance in Arabidopsis leaves.


Assuntos
Aconitato Hidratase/genética , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Aconitato Hidratase/metabolismo , Arabidopsis/enzimologia , Proteínas de Arabidopsis/metabolismo
10.
PLoS One ; 15(7): e0227466, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32678822

RESUMO

Trans-methylation reactions are intrinsic to cellular metabolism in all living organisms. In land plants, a range of substrate-specific methyltransferases catalyze the methylation of DNA, RNA, proteins, cell wall components and numerous species-specific metabolites, thereby providing means for growth and acclimation in various terrestrial habitats. Trans-methylation reactions consume vast amounts of S-adenosyl-L-methionine (SAM) as a methyl donor in several cellular compartments. The inhibitory reaction by-product, S-adenosyl-L-homocysteine (SAH), is continuously removed by SAH hydrolase (SAHH), which essentially maintains trans-methylation reactions in all living cells. Here we report on the evolutionary conservation and post-translational control of SAHH in land plants. We provide evidence suggesting that SAHH forms oligomeric protein complexes in phylogenetically divergent land plants and that the predominant protein complex is composed by a tetramer of the enzyme. Analysis of light-stress-induced adjustments of SAHH in Arabidopsis thaliana and Physcomitrella patens further suggests that regulatory actions may take place on the levels of protein complex formation and phosphorylation of this metabolically central enzyme. Collectively, these data suggest that plant adaptation to terrestrial environments involved evolution of regulatory mechanisms that adjust the trans-methylation machinery in response to environmental cues.


Assuntos
Adenosil-Homocisteinase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Evolução Molecular , Adenosil-Homocisteinase/classificação , Adenosil-Homocisteinase/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/classificação , Proteínas de Arabidopsis/genética , Eletroforese em Gel Bidimensional , Focalização Isoelétrica , Luz , Filogenia , Folhas de Planta/enzimologia , Processamento de Proteína Pós-Traducional/efeitos da radiação , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Estresse Fisiológico
11.
Plant Physiol ; 182(2): 1161-1181, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31659127

RESUMO

Plants optimize their growth and survival through highly integrated regulatory networks that coordinate defensive measures and developmental transitions in response to environmental cues. Protein phosphatase 2A (PP2A) is a key signaling component that controls stress reactions and growth at different stages of plant development, and the PP2A regulatory subunit PP2A-B'γ is required for negative regulation of pathogenesis responses and for maintenance of cell homeostasis in short-day conditions. Here, we report molecular mechanisms by which PP2A-B'γ regulates Botrytis cinerea resistance and leaf senescence in Arabidopsis (Arabidopsis thaliana). We extend the molecular functionality of PP2A-B'γ to a protein kinase-phosphatase interaction with the defense-associated calcium-dependent protein kinase CPK1 and present indications this interaction may function to control CPK1 activity. In presenescent leaf tissues, PP2A-B'γ is also required to negatively control the expression of salicylic acid-related defense genes, which have recently proven vital in plant resistance to necrotrophic fungal pathogens. In addition, we find the premature leaf yellowing of pp2a-b'γ depends on salicylic acid biosynthesis via SALICYLIC ACID INDUCTION DEFICIENT2 and bears the hallmarks of developmental leaf senescence. We propose PP2A-B'γ age-dependently controls salicylic acid-related signaling in plant immunity and developmental leaf senescence.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Botrytis/imunologia , Senescência Celular/genética , Resistência à Doença/genética , Doenças das Plantas/imunologia , Folhas de Planta/metabolismo , Proteína Fosfatase 2/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Cálcio/metabolismo , Senescência Celular/fisiologia , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Resistência à Doença/imunologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica de Plantas/genética , Genótipo , Transferases Intramoleculares/genética , Transferases Intramoleculares/metabolismo , Mutação , Fenótipo , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Imunidade Vegetal/genética , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Ligação Proteica , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Fosfatase 2/genética , Ácido Salicílico/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma/genética
12.
Physiol Plant ; 162(2): 162-176, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28815615

RESUMO

Trans-methylation reactions are vital in basic metabolism, epigenetic regulation, RNA metabolism, and posttranslational control of protein function and therefore fundamental in determining the physiological processes in all living organisms. The plant kingdom is additionally characterized by the production of secondary metabolites that undergo specific hydroxylation, oxidation and methylation reactions to obtain a wide array of different chemical structures. Increasing research efforts have started to reveal the enzymatic pathways underlying the biosynthesis of complex metabolites in plants. Further engineering of these enzymatic machineries offers significant possibilities in the development of bio-based technologies, but necessitates deep understanding of their potential metabolic and regulatory interactions. Trans-methylation reactions are tightly coupled with the so-called activated methyl cycle (AMC), an essential metabolic circuit that maintains the trans-methylation capacity in all living cells. Tight regulation of the AMC is crucial in ensuring accurate trans-methylation reactions in different subcellular compartments, cell types, developmental stages and environmental conditions. This review addresses the organization and posttranslational regulation of the AMC and elaborates its critical role in determining metabolic regulation through modulation of methyl utilization in stress-exposed plants.


Assuntos
Proteínas de Plantas/metabolismo , Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Biológicos , Proteínas de Plantas/genética , Plantas/genética , S-Adenosil-Homocisteína/metabolismo , S-Adenosilmetionina/metabolismo
13.
Plant J ; 89(1): 112-127, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27598402

RESUMO

Glucosinolates (GSL) of cruciferous plants comprise a major group of structurally diverse secondary compounds which act as deterrents against aphids and microbial pathogens and have large commercial and ecological impacts. While the transcriptional regulation governing the biosynthesis and modification of GSL is now relatively well understood, post-translational regulatory components that specifically determine the structural variation of indole glucosinolates have not been reported. We show that the cytoplasmic protein phosphatase 2A regulatory subunit B'γ (PP2A-B'γ) physically interacts with indole glucosinolate methyltransferases and controls the methoxylation of indole glucosinolates and the formation of 4-methoxy-indol-3-yl-methyl glucosinolate in Arabidopsis leaves. By taking advantage of proteomic approaches and metabolic analysis we further demonstrate that PP2A-B'γ is required to control the abundance of oligomeric protein complexes functionally linked with the activated methyl cycle and the trans-methylation capacity of leaf cells. These findings highlight the key regulatory role of PP2A-B'γ in methionine metabolism and provide a previously unrecognized perspective for metabolic engineering of glucosinolate metabolism in cruciferous plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Glucosinolatos/metabolismo , Folhas de Planta/metabolismo , Proteína Fosfatase 2/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Metionina/metabolismo , Metilação , Metiltransferases/genética , Metiltransferases/metabolismo , Modelos Biológicos , Folhas de Planta/genética , Ligação Proteica , Proteína Fosfatase 2/genética , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteômica/métodos , Homologia de Sequência de Aminoácidos
14.
Front Plant Sci ; 7: 812, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27375664

RESUMO

Biotic stress factors pose a major threat to plant health and can significantly deteriorate plant productivity by impairing the physiological functions of the plant. To combat the wide range of pathogens and insect herbivores, plants deploy converging signaling pathways, where counteracting activities of protein kinases and phosphatases form a basic mechanism for determining appropriate defensive measures. Recent studies have identified Protein Phosphatase 2A (PP2A) as a crucial component that controls pathogenesis responses in various plant species. Genetic, proteomic and metabolomic approaches have underscored the versatile nature of PP2A, which contributes to the regulation of receptor signaling, organellar signaling, gene expression, metabolic pathways, and cell death, all of which essentially impact plant immunity. Associated with this, various PP2A subunits mediate post-translational regulation of metabolic enzymes and signaling components. Here we provide an overview of protein kinase/phosphatase functions in plant immunity signaling, and position the multifaceted functions of PP2A in the tightly inter-connected regulatory network that controls the perception, signaling and responding to biotic stress agents in plants.

15.
Antioxidants (Basel) ; 5(1)2016 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-26950157

RESUMO

Reactive oxygen species (ROS) carry out vital functions in determining appropriate stress reactions in plants, but the molecular mechanisms underlying the sensing, signaling and response to ROS as signaling molecules are not yet fully understood. Recent studies have underscored the role of Protein Phosphatase 2A (PP2A) in ROS-dependent responses involved in light acclimation and pathogenesis responses in Arabidopsis thaliana. Genetic, proteomic and metabolomic studies have demonstrated that trimeric PP2A phosphatases control metabolic changes and cell death elicited by intracellular and extracellular ROS signals. Associated with this, PP2A subunits contribute to transcriptional and post-translational regulation of pro-oxidant and antioxidant enzymes. This review highlights the emerging role of PP2A phosphatases in the regulatory ROS signaling networks in plants.

16.
Plant Cell Environ ; 38(12): 2641-51, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26012558

RESUMO

Plants survive periods of unfavourable conditions with the help of sensory mechanisms that respond to reactive oxygen species (ROS) as signalling molecules in different cellular compartments. We have previously demonstrated that protein phosphatase 2A (PP2A) impacts on organellar cross-talk and associated pathogenesis responses in Arabidopsis thaliana. This was evidenced by drastically enhanced pathogenesis responses and cell death in cat2 pp2a-b'γ double mutants, deficient in the main peroxisomal antioxidant enzyme CATALASE 2 and PP2A regulatory subunit B'γ (PP2A-B'γ). In the present paper, we explored the impacts of PP2A-B'γ and a highly similar regulatory subunit PP2A-B'ζ in growth regulation and light stress tolerance in Arabidopsis. PP2A-B'γ and PP2A-B'ζ display high promoter activities in rapidly growing tissues and are required for optimal growth under favourable conditions. Upon acclimation to a combination of high light, elevated temperature and reduced availability of water, however, pp2a-b'γζ double mutants grow similarly to the wild type and show enhanced tolerance against photo-oxidative stress. We conclude that by controlling ROS homeostasis and signalling, PP2A-B'γ and PP2A-B'ζ may direct acclimation strategies upon environmental perturbations, hence acting as important determinants of defence responses and light acclimation in plants.


Assuntos
Arabidopsis/enzimologia , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas , Aclimatação , Arabidopsis/genética , Arabidopsis/fisiologia , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Genes Reporter , Homeostase , Luz , Mutação , Estresse Oxidativo , Fosforilação , Folhas de Planta/enzimologia , Folhas de Planta/genética , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Proteína Fosfatase 2/genética , Espécies Reativas de Oxigênio/metabolismo , Plântula/enzimologia , Plântula/genética , Plântula/fisiologia , Plântula/efeitos da radiação , Estresse Fisiológico
17.
New Phytol ; 205(3): 1250-1263, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25307043

RESUMO

Organellar reactive oxygen species (ROS) signalling is a key mechanism that promotes the onset of defensive measures in stress-exposed plants. The underlying molecular mechanisms and feedback regulation loops, however, still remain poorly understood. Our previous work has shown that a specific regulatory B'γ subunit of protein phosphatase 2A (PP2A) is required to control organellar ROS signalling and associated metabolic adjustments in Arabidopsis thaliana. Here, we addressed the mechanisms through which PP2A-B'γ impacts on organellar metabolic crosstalk and ROS homeostasis in leaves. Genetic, biochemical and pharmacological approaches, together with a combination of data-dependent acquisition (DDA) and selected reaction monitoring (SRM) MS techniques, were utilized to assess PP2A-B'γ-dependent adjustments in Arabidopsis thaliana. We show that PP2A-B'γ physically interacts with the cytoplasmic form of aconitase, a central metabolic enzyme functionally connected with mitochondrial respiration, oxidative stress responses and regulation of cell death in plants. Furthermore, PP2A-B'γ impacts ROS homeostasis by controlling the abundance of specific alternative oxidase isoforms, AOX1A and AOX1D, in leaf mitochondria. We conclude that PP2A-B'γ-dependent regulatory actions modulate the functional status of metabolic enzymes that essentially contribute to intracellular ROS signalling and metabolic homeostasis in plants.


Assuntos
Aconitato Hidratase/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Citoplasma/enzimologia , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Proteína Fosfatase 2/metabolismo , Sequência de Aminoácidos , Arabidopsis/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Fluorescência , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Proteínas Mitocondriais/antagonistas & inibidores , Dados de Sequência Molecular , Mutação/genética , Oxirredutases/antagonistas & inibidores , Peptídeos/química , Fosforilação/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/antagonistas & inibidores , Ligação Proteica/efeitos dos fármacos
18.
Philos Trans R Soc Lond B Biol Sci ; 369(1640): 20130235, 2014 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-24591720

RESUMO

The evolutionary history of plants is tightly connected with the evolution of microbial pathogens and herbivores, which use photosynthetic end products as a source of life. In these interactions, plants, as the stationary party, have evolved sophisticated mechanisms to sense, signal and respond to the presence of external stress agents. Chloroplasts are metabolically versatile organelles that carry out fundamental functions in determining appropriate immune reactions in plants. Besides photosynthesis, chloroplasts host key steps in the biosynthesis of amino acids, stress hormones and secondary metabolites, which have a great impact on resistance against pathogens and insect herbivores. Changes in chloroplast redox signalling pathways and reactive oxygen species metabolism also mediate local and systemic signals, which modulate plant resistance to light stress and disease. Moreover, interplay among chloroplastic signalling networks and plasma membrane receptor kinases is emerging as a key mechanism that modulates stress responses in plants. This review highlights the central role of chloroplasts in the signalling crosstalk that essentially determines the outcome of plant-pathogen interactions in plants.


Assuntos
Vias Biossintéticas/imunologia , Cloroplastos/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Luz , Plantas/imunologia , Transdução de Sinais/imunologia , Estresse Fisiológico/imunologia , Oxirredução , Plantas/microbiologia , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos da radiação
19.
Antioxid Redox Signal ; 18(16): 2220-39, 2013 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-23157163

RESUMO

SIGNIFICANCE: Interplay among apoplastic and chloroplastic redox signaling networks is emerging as a key mechanism in plant stress responses. RECENT ADVANCES: Recent research has revealed components involved in apoplastic and chloroplastic redox signaling. Also, the sequence of events from stress perception, activation of apoplastic reactive oxygen species (ROS) burst through NADPH oxidases, cytoplasmic and chloroplastic Ca(2+)-transients, and organellar redox signals to physiological responses is starting to emerge. Moreover, a functional overlap between light acclimation and plant immunity in photosynthetically active tissues has been demonstrated. CRITICAL ISSUES: Any deviations from the basal cellular redox balance may induce acclimation responses that continuously readjust cellular functions. However, diversion of resources to stress responses may lead to attenuation of growth, and exaggeration of defensive reactions may thus be detrimental to the plant. The ultimate outcome of acclimation responses must therefore be tightly controlled by the redox signaling networks between organellar and apoplastic signaling systems. FUTURE DIRECTIONS: Two major questions still remain to be solved: the sensory mechanism for ROS and the components involved in relaying the signals from the apoplast to the chloroplast. A comprehensive view of regulatory networks will facilitate the understanding on how environmental factors affect the production of phytonutrients and biomass in plants. Translation of such information from model plants to crop species will be at the cutting edge of research in the near future. These challenges give a frame for future studies on ROS and redox regulation of stress acclimation in photosynthetic organisms.


Assuntos
Cloroplastos/metabolismo , Estresse Oxidativo , Plantas/metabolismo , Transdução de Sinais , Animais , Oxirredução , Espécies Reativas de Oxigênio/metabolismo
20.
Plant Signal Behav ; 6(11): 1665-8, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22041935

RESUMO

Controlled protein dephosphorylation by protein phosphatase 2A (PP2A) regulates diverse signaling events in plants. Recently, we showed that a specific B'γ regulatory subunit of PP2A mediates basal repression of immune reactions in Arabidopsis thaliana. Knock-down pp2a-b'γ mutants display constitutive defense reactions and premature yellowing conditionally under moderate light intensity. Here we show that knock-down of PP2A-B'γ renders CALRETI CULIN 1 (CRT 1) highly phosphorylated. Calreticulins are ER-resident chaperonins that operate in the unfolded protein response to prevent ER-stress, components of which are differentially regulated at mRNA level in pp2a-b'γ leaves. We speculate that in dephosphorylated state, CRT 1 promotes the degradation of unfolded proteins in ER. Our findings suggest that in wild type plants, dephosphorylation of CRT 1 is mediated by PP2A-B'γ dependent signaling effects. In pp2a-b'γ, strong phosphorylation of CRT 1 may partially imbalance the quality control of protein folding, thereby eliciting ER-stress and premature yellowing in leaves.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Calreticulina/metabolismo , Proteína Fosfatase 2/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Calreticulina/genética , Retículo Endoplasmático/metabolismo , Técnicas de Silenciamento de Genes , Fosforilação , Proteína Fosfatase 2/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...