Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomed Microdevices ; 23(1): 7, 2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33426594

RESUMO

Knowledge of human gingival cell responses to dental monomers is critical for the development of new dental materials. Testing standards have been developed to provide guidelines to evaluate biological functionality of dental materials and devices. However, one shortcoming of the traditional testing platforms is that they do not recapitulate the multi-layered configuration of gingiva, and thus cannot evaluate the layer-specific cellular responses. An oral mucosa-chip with two cell layers was previously developed as an alternative platform to assess the oral mucosa responses to dental biomaterials. The mucosa-chip consists of an apical keratinocyte layer attached to a fibroblast-embedded collagen hydrogel through interconnecting pores in a three-microchannel network. Here, cell responses in the mucosa-chip were evaluated against 2-hydroxyethyl methacrylate (HEMA), a common monomer used in restorative and aesthetic dentistry. The response of mucosal cell viability was evaluated by exposing the chip to HEMA of concentrations ranging from 1.56 to 25 mM and compared to cells in conventional well-plate monoculture. The co-cultured cells were then stained and imaged with epifluorescence and confocal microscopy to determine the layer-specific responses to the treatment. Mucosa-chips were demonstrated to be more sensitive to assess HEMA-altered cell viability than well-plate cultures, especially at lower doses (1.56 and 6.25 mM). The findings suggest that the mucosa-chip is a promising alternative to traditional platforms or assays to test a variety of biomaterials by offering a multi-layered tissue geometry, accessible layer-specific information, and higher sensitivity in detecting cellular responses.


Assuntos
Dispositivos Lab-On-A-Chip , Mucosa Bucal , Materiais Biocompatíveis , Sobrevivência Celular , Gengiva , Humanos , Metacrilatos
2.
Biomicrofluidics ; 12(5): 054106, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30310527

RESUMO

The human oral mucosa hosts a diverse microbiome and is exposed to potentially toxic biomaterials from dental restoratives. Mucosal health is partly determined by cell and tissue responses to challenges such as dental materials and pathogenic bacteria. An in vitro model to rapidly determine potential layer-specific responses would lead to a better understanding of mucosal homeostasis and pathology. Therefore, this study aimed to develop a co-cultured microfluidic mucosal model on-a-chip to rapidly assess mucosal remodeling and the responses of epithelial and subepithelial layers to challenges typically found in the oral environment. A gingival fibroblast-laden collagen hydrogel was assembled in the central channel of a three-channel microfluidic chamber with interconnecting pores, followed by a keratinocyte layer attached to the collagen exposed in the pores. This configuration produced apical and subepithelial side channels capable of sustaining flow. Keratinocyte, fibroblast, and collagen densities were optimized to create a co-culture tissue-like construct stable over one week. Cells were stained and imaged with epifluorescence microscopy to confirm layer characteristics. As proof-of-concept, the mucosal construct was exposed separately to a dental monomer, 2-hydroxylethyl methacrylate (HEMA), and the oral bacteria Streptococcus mutans. Exposure to HEMA lowered mucosal cell viability, while exposure to the bacteria lowered trans-epithelial electrical resistance. These findings suggest that the oral mucosa-on-a-chip is useful for studying oral mucosal interactions with bacteria and biomaterials with a histology-like view of the tissue layers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...