Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Iran J Pathol ; 19(1): 126-131, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38864091

RESUMO

COVID-19 is known to present with acute respiratory distress syndrome pathological manifestations. Studies have shown that patients with COVID-19 can develop diffuse alveolar damage, acute bronchopneumonia, necrotic bronchiolitis, and viral pneumonia. In this study, we investigated 11 cases. Needle necropsies of 11 patients, hospitalized at Tohid and Kowsar hospitals of Kurdistan University of Medical Sciences, with a positive antemortem SARS-CoV-2 (COVID-19) real-time PCR test, were fixated within 3 hours after death in the negative-pressure isolation morgue. The participants included six men (54%) and five women (46%) with a mean age of 73.82±10.58 (52-86) years old. The average hospitalization was 14.27±15.72 days. The results showed interstitial lymphocytic pneumonitis in most of the cases, varied from mild to moderate and up to severe in some cases. In 7 cases, anthracosis was noted, while one case demonstrated anthracosis with fibrosis. The hyaline membrane was reported in two patients. In one case, severe interstitial lymphocytic pneumonia with intra-alveolar exudate with organization, lithiasis, bronchiolitis pattern (BOOP), intra-alveolar hemorrhage, and mild fibrosis were seen. As a result, it is suggested to keep an eye on these pathologies in management of the severe cases of COVID-19 infection.

2.
Eur J Med Res ; 28(1): 576, 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38071365

RESUMO

BACKGROUND: Humans' nervous system has a limited ability to repair nerve cells, which poses substantial challenges in treating injuries and diseases. Stem cells are identified by the potential to renew their selves and develop into several cell types, making them ideal candidates for cell replacement in injured neurons. Neuronal differentiation of embryonic stem cells in modern medicine is significant. Nanomaterials have distinct advantages in directing stem cell function and tissue regeneration in this field. We attempted in this systematic review to collect data, analyze them, and report results on the effect of nanomaterials on neuronal differentiation of embryonic stem cells. METHODS: International databases such as PubMed, Scopus, ISI Web of Science, and EMBASE were searched for available articles on the effect of nanomaterials on neuronal differentiation of embryonic stem cells (up to OCTOBER 2023). After that, screening (by title, abstract, and full text), selection, and data extraction were performed. Also, quality assessment was conducted based on the STROBE checklist. RESULTS: In total, 1507 articles were identified and assessed, and then only 29 articles were found eligible to be included. Nine studies used 0D nanomaterials, ten used 1D nanomaterials, two reported 2D nanomaterials, and eight demonstrated the application of 3D nanomaterials. The main biomaterial in studies was polymer-based composites. Three studies reported the negative effect of nanomaterials on neural differentiation. CONCLUSION: Neural differentiation is crucial in neurological regenerative medicine. Nanomaterials with different characteristics, particularly those cellular regulating activities and stem cell fate, have much potential in neural tissue engineering. These findings indicate a new understanding of potential applications of physicochemical cues in nerve tissue engineering.


Assuntos
Células-Tronco Embrionárias , Nanoestruturas , Humanos , Neurônios/metabolismo , Engenharia Tecidual/métodos , Diferenciação Celular
3.
Cell J ; 25(12): 813-821, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-38192251

RESUMO

Neural cells are the most important components of the nervous system and have the duty of electrical signal transmission. Damage to these cells can lead to neurological disorders. Scientists have discovered different methods, such as stem cell therapy, to heal or regenerate damaged neural cells. Dental stem cells are among the different cells used in this method. This review attempts to evaluate the effect of biomaterials mentioned in the cited papers on differentiation of human dental pulp stem cells (hDPSCs) into neural cells for use in stem cell therapy of neurological disorders. We searched international databases for articles about the effect of biomaterials on neuronal differentiation of hDPSCs. The relevant articles were screened by title, abstract, and full text, followed by selection and data extraction. Totally, we identified 731 articles and chose 18 for inclusion in the study. A total of four studies employed polymeric scaffolds, four assessed chitosan scaffolds (CS), two utilised hydrogel scaffolds, one investigation utilised decellularised extracellular matrix (ECM), and six studies applied the floating sphere technique. hDPSCs could heal nerve damage in regenerative medicine. In the third iteration of nerve conduits, scaffolds, stem cells, regulated growth factor release, and ECM proteins restore major nerve damage. hDPSCs must differentiate into neural cells or neuron-like cells to regenerate nerves. Plastic-adherent cultures, floating dentosphere cultures, CS, polymeric scaffolds, hydrogels, and ECM mimics have been used to differentiate hDPSCs. According to our findings, the floating dentosphere technique and 3D-PLAS are currently the two best techniques since they result in neuroprogenitor cells, which are the starting point of differentiation and they can turn into any desired neural cell.

4.
Int J Fertil Steril ; 16(2): 70-75, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35639654

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters cells through angiotensin converting enzyme 2 (ACE2), which expression of its gene increases during pregnancy that is resulted in an enhanced level of the ACE2 enzyme. It might enhance the risk of SARS-CoV-2 infection and its complications in the pregnant women. Although, pregnancy hypertensive disorders and severe infection with SARS-CoV-2 are correlated with high comorbidity, these two entities should be discriminated from each other. Also, there is a concern about the risk of preeclampsia and consequently severe coronavirus disease 2019 (COVID-19) development in the pregnant women. So, to answer these questions, in the present review the literature was surveyed. It seems there is higher severity of COVID-19 among pregnant women than non-pregnant women and more adverse pregnancy outcomes among pregnant women infected with SARS-CoV-2. In addition, an association between COVID-19 with preeclampsia and the role of preeclampsia and gestational hypertension as risk factors for SARS-CoV-2 infection and its complications is suggested. However, infection of the placenta and the SARS-CoV-2 vertical transmission is rare. Various mechanisms could explain the role of COVID-19 in the risk of preeclampsia and association between preeclampsia and COVID-19. Suggested mechanisms are included decreased ACE2 activity and imbalance between Ang II and Ang-(1-7) in preeclampsia, association of both of severe forms of COVID-19 and pregnancy hypertensive disorders with comorbidity, and interaction between immune system, inflammatory cytokines and the renin angiotensin aldosterone system and its contribution to the hypertension pathogenesis. It is concluded that preeclampsia and gestational hypertension might be risk factors for SARS-CoV-2 infection and its complications.Infertility is one of the major problems faced in medicine. There are numerous factors that play a role in infertility. For example, numerous studies mention the impact of the quantity and quality of mitochondria in sexual gametes. This is a narrative review of the effects of the mitochondrial genome on fertility. We searched the PubMed, Science Direct, SID, Google Scholar, and Scopus databases for articles related to "Fertility, Infertility, Miscarriage, Mitochondria, Sperm, mtDNA, Oocytes" and other synonymous keywords from 2000 to 2020. The mitochondrial genome affects infertility in both male and female gametes; in sperm, it mainly releases free radicals. In the oocyte, a mutation in this genome can affect the amount of energy required after fertilisation, leading to gestation failure. In both cases, infertile cells have substantially less mitochondrial DNA (mtDNA) copies. The effects of mtDNA on gamete fertility occur via changes in oxidative phosphorylation and cellular energy production. Also, a reduction in the number of mtDNA copies is directly associated with sex cell infertility. Therefore, evaluation of the mitochondrial genome can be an excellent diagnostic option for couples who have children with neonatal disorders, infertile couples who seek assisted reproductive treatment, and those in whom assisted reproductive techniques have failed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...