Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Foods ; 13(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38790777

RESUMO

There is currently insufficient acknowledgment of the relationship between fish welfare and ultimate fillet quality. The purpose of this study was to assess the impacts of pre-slaughter handling and stocking density as fish welfare markers on fillet quality of largemouth bass (Micropterus salmoides). Fish from three stocking densities of 35, 50, and 65 kg·m-3 were reared in a recirculating aquaculture system (RAS) for 12 weeks and received commercial feed. Ultimately, the fish were either stunned with percussion on the head (control group) or subjected to air exposure for 3 min (anoxia group) before stunning and subsequent collection of blood and fillet samples. Western blot analysis revealed the degradation of actin in both groups. Additionally, higher oxidation progress and lower hardness and pH were observed in anoxia compared to the control group. We observed higher hardness at 35 kg·m-3 in anoxia compared to 50 and 65 km-3. The initial hardness values at 35, 50, and 65 km-3 were 1073, 841, and 813 (g) respectively in the anoxia group. Furthermore, the anoxia and control groups had rigor mortis after 6 and 10 h, respectively. Cortisol and glucose levels, and oxidative enzymes activity were higher in anoxia than in the control group. In conclusion, oxidation induced by anoxia likely plays a crucial role as a promoter of the quality deterioration of largemouth bass fillets.

2.
Anim Nutr ; 14: 20-31, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37234947

RESUMO

An 8-week feeding experiment was carried out to explore the effects of dietary n-3/n-6 polyunsaturated fatty acid (PUFA) ratio on growth performance, lipid metabolism, hepatic antioxidant status, and gut flora of spotted seabass (Lateolabrax maculatus). Six experimental diets were formulated to contain different levels of two purified oil sources including docosahexaenoic and eicosapentaenoic acids enriched oil (n-3) and linoleic acid-enriched oil (n-6) leading to n-3/n-6 PUFA ratios of 0.04, 0.35, 0.66, 1.35, 2.45 and 16.17. Each diet was fed to triplicate groups of juvenile L. maculatus (11.06 ± 0.20 g, 30 fish/tank). Final body weight (FBW), weight gain (WG), specific growth rates (SGR), protein efficiency ratio (PER) and feed utilization efficiency increased as n-3/n-6 PUFA ratio increased up to a certain level, and then decreased thereafter. Fish fed the diet with n-3/n-6 PUFA ratio of 0.66 exhibited the highest FBW, WG, SGR and PER and the lowest feed conversion ratio. Lower n-3/n-6 PUFA ratios induced up-regulated expression of lipid synthesis-related genes (fas, acc2 and srebp-1c) and down-regulated expression of lipolysis related genes (atgl, pparα, cpt-1 and aox). Higher expression of lipolysis-related genes (atgl, pparα and cpt-1) was recorded at moderate n-3/n-6 PUFA ratios (0.66 to 1.35). Moreover, inappropriate n-3/n-6 PUFA ratios triggered up-regulation of pro-inflammatory genes (il-6 and tnf-α) and down-regulation of anti-inflammatory genes (il-4 and il-10) in the intestine. The diet with n-3/n-6 PUFA ratio of 0.66 inhibited intestine inflammation, improved intestinal flora richness, increased the abundance of beneficial bacteria such as Lactobacillus, Alloprevotella and Ruminococcus, and reduced the abundance of harmful bacteria including Escherichia-Shigella and Enterococcus. In summary, it could be suggested that a dietary n-3/n-6 PUFA ratio of 0.66 can improve growth performance and feed utilization in L. maculatus, as is deemed to be mediated through regulation of lipid metabolism and intestinal flora.

3.
Fish Physiol Biochem ; 2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36322361

RESUMO

This study evaluated the effects of dietary methionine level and rearing water temperature on growth, antioxidant capacity, methionine metabolism, and hepatocyte autophagy in spotted seabass (Lateolabrax maculatus). A factorial design was used with six methionine levels [0.64, 0.85, 1.11, 1.33, 1.58, and 1.76%] and two temperatures [moderate temperature (MT): 27 ℃, and high temperature (HT): 33 ℃]. The results revealed the significant effects of both dietary methionine level and water temperature on weight gain (WG) and feed efficiency (FE), and their interaction effect was found on WG (P < 0.05). In both water temperatures tested, fish WG increased with increasing methionine level up to 1.11% and decreased thereafter. The groups of fish reared at MT exhibited dramatically higher WG and FE than those kept at HT while an opposite trend was observed for feed intake. Liver antioxidant indices including reduced glutathione and malondialdehyde (MDA) concentrations, and catalase and superoxide dismutase (SOD) activities remarkably increased in the HT group compared to the MT group. Moreover, the lowest MDA concentration and the highest SOD activity were recorded at methionine levels between 1.11% and 0.85%, respectively, regardless of water temperatures. Expression of methionine metabolism-related key enzyme genes (mat2b, cbs, ms, and bhmt) in the liver was increased at moderate methionine levels, and higher expression levels were detected at MT compared to HT with the exception of ms gene relative expression. Relative expression of hepatocyte autophagy-related genes (pink1, atg5, mul1, foxo3) and hsp70 was upregulated by increasing methionine level up to a certain level and decreased thereafter and increasing water temperature led to significantly enhanced expression of hsp70. In summary, HT induced heat stress and reduced fish growth, and an appropriate dietary methionine level improved the antioxidant capacity and stress resistance of fish. A second-order polynomial regression analysis based on the WG suggested that the optimal dietary methionine level for maximum growth of spotted seabass is 1.22% of the diet at 27 ℃ and 1.26% of the diet at 33 ℃, then 1.37 g and 1.68 g dietary methionine intake is required for 100 g weight gain at 27 ℃ or 33 ℃, respectively.

4.
Antioxidants (Basel) ; 11(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35624756

RESUMO

Emerging evidence suggests that mitochondrial dysfunction mediates the pathogenesis for non-alcoholic fatty liver disease (NAFLD). Hydroxytyrosol (HT) is a key component of extra virgin olive oil which can exert beneficial effects on NAFLD through modulating mitochondria. However, the mechanism of the impacts of HT still remains elusive. Thus, an in vivo and a series of in vitro experiments were carried out to examine the impacts of hydroxytyrosol (HT) on lipid metabolism and mitochondrial function in fish. For the in vivo experiment, two diets were produced to contain 10% and 16% fat as normal-fat and high-fat diets (NFD and HFD) and two additional diets were prepared by supplementing 200 mg/kg of HT to the NFD and HFD. The test diets were fed to triplicate groups of spotted seabass (Lateolabrax maculatus) juveniles for 8 weeks. The results showed that feeding HFD leads to increased fat deposition in the liver and induces oxidative stress, both of which were ameliorated by HT application. Furthermore, transmission electron microscopy revealed that HFD destroyed mitochondrial cristae and matrix and induced severe hydropic phenotype, while HT administration relieved these alterations. The results of in vitro studies using zebrafish liver cell line (ZFL) showed that HT promotes mitochondrial function and activates PINK1-mediated mitophagy. These beneficial effects of HT disappeared when the cells were treated with cyclosporin A (Csa) as a mitophagy inhibitor. Moreover, the PINK1-mediated mitophagy activation by HT was blocked when compound C (CC) was used as an AMPK inhibitor. In conclusion, our findings demonstrated that HT alleviates fat accumulation, oxidative stress and mitochondrial dysfunction, and its effects are deemed to be mediated via activating mitophagy through the AMPK/PINK1 pathway.

5.
Fish Shellfish Immunol ; 125: 141-151, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35569775

RESUMO

Yinchenhao Decoction (YD), a Chinese herbal medicine, has been traditionally used for treatment of metabolic liver diseases. A 10-week feeding trail was carried out to examine the effects of YD supplementation in a high carbohydrate diet (HCD) on liver histopathology, immune response, disease resistance, and expression of genes associated with endoplasmic reticulum stress, autophagy, apoptosis, necroptosis and inflammation in juvenile largemouth. A diet containing 9% carbohydrate was used as a low carbohydrate diet (LCD), and a HCD was formulated to contain 18% carbohydrate and supplemented with 0, 0.5, 1, 2 or 4% YD (HCD, HCD+0.5YD, HCD+1YD, HCD+2YD and HCD+4YD). Triplicate groups of fish (5.6 ± 0.2 g) were feed the test diets to visual satiety for 10 weeks. The highest survival rate after Nocardia seriolae challenge was recorded for the HCD+4YD group. YD application led to reduced ACP, AKP, AST and ALT activities. HCD-induced cells swelling, ruptured cell membrane, migrated nuclei and increasing inflammatory cells in hepatocytes were mitigated by YD addition. Moreover, YD decreased the expressions of pro-inflammation genes (TNF-α, IL-1ß, IL-8, hepcidin1, NF-κB, COX2, CD80 and CD83) and increased the mRNA levels of anti-inflammation genes (IL-10 and IKBα). The mode of liver cell death was preferably changed to programed apoptosis rather than uncontrolled necroptosis by application of YD in HCD. Furthermore, the expression of UPR genes (IRE1, Eif2α, ATF6, XBP1 and GRP78/Bip) and autophagy genes (LC3-2, BNIP3 and P62) was increased by YD supplementation. In summary, our results demonstrated that YD addition in HCD enhances UPR, autophagy and programed apoptosis maintaining the homeostasis, and decreases uncontrolled necroptosis and inflammation, ultimately leading to improved immune response in largemouth bass.


Assuntos
Bass , Medicamentos de Ervas Chinesas , Animais , Carboidratos , Dieta , Medicamentos de Ervas Chinesas/farmacologia , Imunidade , Inflamação/veterinária
6.
Fish Physiol Biochem ; 48(1): 145-159, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35034221

RESUMO

Many metabolic diseases in fish are often associated with lowered mitochondrial fatty acid ß-oxidation (FAO). However, the physiological role of mitochondrial FAO in lipid metabolism has not been verified in many carnivorous fish species, for example in largemouth bass (Micropterus salmonids). In the present study, a specific mitochondrial FAO inhibitor, mildronate (MD), was used to investigate the effects of impaired mitochondrial FAO on growth performance, health status, and lipid metabolism of largemouth bass. The results showed that the dietary MD treatment significantly suppressed growth performance and caused heavy lipid accumulation, especially neutral lipid, in the liver. The MD-treated fish exhibited lower monounsaturated fatty acid and higher long-chain polyunsaturated fatty acids in the muscle. The MD treatment downregulated the gene expressions in lipolysis and lipogenesis, as well as the expressions of the genes and some key proteins in FAO without enhancing peroxisomal FAO. Additionally, the MD-treated fish had lower serum aspartate aminotransferase activity and lower pro-inflammation- and apoptosis-related genes in the liver. Taken together, MD treatment markedly induced lipid accumulation via depressing lipid catabolism. Our findings reveal the pivotal roles of mitochondrial FAO in maintaining health and lipid homeostasis in largemouth bass and could be hopeful in understanding metabolic diseases in farmed carnivorous fish.


Assuntos
Bass , Metabolismo dos Lipídeos , Metilidrazinas/efeitos adversos , Animais , Bass/crescimento & desenvolvimento , Bass/metabolismo , Dieta/veterinária , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipídeos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
7.
Fish Shellfish Immunol ; 119: 308-317, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34662728

RESUMO

This study assessed the effects of feed carbohydrate content on intestinal physical barrier and immunity in juvenile largemouth bass (Micropterus salmoides). Triplicate groups of juvenile fish (4.1 ± 0.2 g) were fed low (LCD, 7%), medium (MCD, 12%) and high (HCD, 17%) carbohydrate diets for eight weeks. Gut histology revealed the slight infiltration of inflammatory cells and moderate loss of mucous membrane layer in HCD group. Expression of ZO1, occluding, and claudin7 genes and epidermal growth factor receptor (EGFR) gene were significantly decreased in HCD group indicating the impairment of tight junction and epithelial cell regeneration. The results showed the significant (P < 0.05) reduction of antioxidant capacity in HCD group compared to LCD. Furthermore, expression of intestinal ERS-related genes such as IRE1, Eif2α, GRP78, CHOPα and CHOPß in HCD group was significantly higher than the LCD group. In addition, HCD induced the up-regulated expression of inflammatory (IL-8, IL-1ß, TNFα and COX2) and apoptosis (TRAF2, bax, casepase3, caspase8 and casepase9) related genes in fish intestine. The data generated in this study clearly demonstrated that HCD induced ERS and oxidative stress, which promoted intestinal inflammation and apoptosis in juvenile largemouth bass.


Assuntos
Bass , Animais , Apoptose , Carboidratos , Dieta/veterinária , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Inflamação/veterinária , Estresse Oxidativo
8.
Front Microbiol ; 12: 739572, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675904

RESUMO

Poor utilization efficiency of plant protein diets always leads to intestinal barrier dysfunction and growth inhibition in animals. Probiotics have shown promise in improving growth performance and gut health of the host. However, obtaining the host-beneficial probiotic from thousands of bacterial phylotypes is challenging. Here, four intestinal autochthonous bacteria were isolated from fast-growing bullfrog after a 60-day feeding on a soybean meal (SM)-based diet. Another feeding trial was conducted to evaluate the effects of supplementing these strains in an SM-based diet on growth, nutrient digestibility, immunity, and gut health of bullfrog. A high-SM basal diet was used as a non-supplemented control group (NC), and four other diets were prepared by supplementing the basal diet with 1 × 107 CFU/g of Bacillus siamensis, Bacillus tequilensis (BT), Bacillus velezensis, and Lactococcus lactis (LL). Results showed that weight gain, feed efficiency, nitrogen retention, and apparent digestibility coefficients of dry matter and protein were significantly higher in the LL group compared with the NC group (p < 0.05). Furthermore, compared with the NC group, both BT and LL groups showed markedly higher jejunal protease and amylase activities, serum complement 4 and immunoglobulin M levels, jejunal muscularis thickness (p < 0.05), and up-regulated expression of il-10 and zo-1 genes (p < 0.05). High-throughput sequencing revealed higher abundances of Bacillus and Cetobacterium in BT and LL groups, respectively, accompanied with decreased abundances of Enterobacter and Escherichia-Shigella. Besides, KEGG pathways related to metabolisms were significantly enhanced by the LL diet relative to the NC diet (p < 0.05). Overall, the beneficial effects of two frog-derived probiotics were determined: supplementation of L. lactis in SM-based diet promoted growth and nutrient digestibility; both B. tequilensis and L. lactis supplementation improved immune response and intestinal barrier function of bullfrogs.

9.
J Agric Food Chem ; 68(35): 9377-9386, 2020 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-32786840

RESUMO

Two experiments were carried out to examine the impacts of hydroxytyrosol (HT) on lipid metabolism and mitochondrial function in Megalobrama amblycephala. Triplicate groups of fish were fed four test diets: (1) low-fat diet (LFD, 5% fat), (2) high-fat diet (HFD, 15% fat), (3) LFD + 100 mg/kg HT (LFD + HT), and (4) HFD + 100 mg/kg HT (HFD + HT) (in vivo). Hepatocytes from the same batch were exposed to three media including L-15 medium (L15), oleic acid (OA) medium [L15 + 400 µM OA], and OA + HT medium [L15 + 400 µM OA + 10 µM HT] to explore the roles of HT in mitochondrial function (in vitro). Fish fed HFD had excessive fat deposition in the liver, and HT inclusion in the HFD decreased hepatic fat deposition. Transmission electron microscopy revealed that the HFD triggers loss of cristae and metrical density and hydropic changes in mitochondria and that HT supplementation attenuates the ultrastructural alterations of mitochondria. The in vitro test showed that HT decreases fat deposition in hepatocytes, suppresses the reactive oxygen species formation, and facilitates the expression of phospho-AMPK protein and the genes involved in mitochondria biogenesis (PGC-1, NRF-1, TFAM) and autophagy (PINK1, Mul1, Atg5). These findings suggest the lipid-lowering effect of HT mediated by activation of mitochondrial biogenesis and autophagy through the AMPK pathway.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Cyprinidae/metabolismo , Gorduras na Dieta/metabolismo , Proteínas de Peixes/metabolismo , Fígado/metabolismo , Mitocôndrias/metabolismo , Álcool Feniletílico/análogos & derivados , Proteínas Quinases Ativadas por AMP/genética , Ração Animal/análise , Animais , Cyprinidae/genética , Proteínas de Peixes/genética , Hepatócitos/metabolismo , Fígado/citologia , Biogênese de Organelas , Álcool Feniletílico/metabolismo
10.
Fish Shellfish Immunol ; 106: 142-148, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32540503

RESUMO

An in-vitro study was carried out to examine the effects of yeast hydrolysate (YH) on antioxidant capacity and innate immunity of blunt snout bream (Megalobrama amblycephala) hepatocytes. Fish primary hepatocytes were seeded at a density of 3 × 105 cells mL-1 in 6-well tissue culture plates and treated with two different media including: 1) DMEM/F12 medium (control), and 2) YH medium [DMEM/F12 + 0.1 g L-1 YH]. After incubation for 24 h, the culture medium and primary hepatocytes were collected for subsequent analyses. The results showed no significant (P > 0.05) effect of YH on aspartate aminotransferase (AST), alanine aminotransferase (ALT) and lactate dehydrogenase (LDH) activities and urea nitrogen (UN) concentration in the conditioned medium. However, significantly (P < 0.05) higher ALT and AST activities were found in YH treated hepatocytes compared to control. Moreover, YH supplementation led to significant enhancement of superoxide dismutase (SOD), catalase (CAT), alternative complement pathway (ACH50) and glutathione peroxidase (GPX) activities and reduction of malondialdehyde (MDA) concentration in the conditioned medium. Furthermore, YH application upregulated the expression of SOD, CAT and NOX2 genes and downregulated mRNA levels of Keap1, Nrf2 and Bach1 in hepatocytes. Also, markedly higher lysozyme activity and albumin concentration were found in the conditioned medium of YH group compared to the control. Additionally, expression of immune-related genes such as antimicrobial peptides 1 (Leap 1) and Leap 2 were significantly upregulated by YH application. Down-regulated expression of NADPH oxidase-2 (NOX2), Kelch-like-ECH-associated protein 1 (Keap1), NF-E2-related factor 2 (Nrf2) and BTB and CNC homolog 1 (Bach1) were observed in YH treated hepatocytes. To conclude, YH supplementation improved antioxidant capacity and innate immunity of blunt snout bream hepatocytes.


Assuntos
Antioxidantes/metabolismo , Cyprinidae/imunologia , Hepatócitos/imunologia , Imunomodulação/efeitos dos fármacos , Hidrolisados de Proteína/farmacologia , Fermento Seco/farmacologia , Animais , Hepatócitos/efeitos dos fármacos
11.
Int J Mol Sci ; 21(6)2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32178369

RESUMO

This study aimed at achieving the molecular characterization of peroxisome proliferator-activated receptor-gamma coactivator 1ß (PGC-1ß) and exploring its modulatory roles in mitochondria biogenesis in blunt snout bream (Megalobrama amblycephala). A full-length cDNA of PGC-1ß was cloned from liver which covered 3110 bp encoding 859 amino acids. The conserved motifs of PGC-1ß family proteins were gained by MEME software, and the phylogenetic analyses showed motif loss and rearrangement of PGC-1ß in fish. The function of PGC-1ß was evaluated through overexpression and knockdown of PGC-1ß in primary hepatocytes of blunt snout bream. We observed overexpression of PGC-1ß along with enhanced mitochondrial transcription factor A (TFAM) expression and mtDNA copies in hepatocytes, and its knockdown led to slightly reduced NRF1 expression. However, knockdown of PGC-1ß did not significantly influence TFAM expression or mtDNA copies. The alterations in mitochondria biogenesis were assessed following high-fat intake, and the results showed that it induces downregulation of PGC-1ß. Furthermore, significant decreases in mitochondrial respiratory chain activities and mitochondria biogenesis were observed by high-fat intake. Our findings demonstrated that overexpression of PGC-1ß induces the enhancement of TFAM expression and mtDNA amount but not NRF-1. Therefore, it could be concluded that PGC-1ß is involved in mitochondrial biogenesis in blunt snout bream but not through PGC-1ß/NRF-1 pathway.


Assuntos
Cyprinidae/genética , Cyprinidae/fisiologia , Mitocôndrias/genética , Mitocôndrias/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/genética , Aminoácidos , Animais , DNA Mitocondrial/genética , Proteínas de Ligação a DNA/genética , Hepatócitos/fisiologia , Fígado , Proteínas Mitocondriais/genética , Biogênese de Organelas , Filogenia , Transdução de Sinais/genética , Fatores de Transcrição/genética
12.
Artigo em Inglês | MEDLINE | ID: mdl-30611888

RESUMO

Aquaculture jeopardizes the aquatic environment by discharge of the most dietary phosphorus (P) into the water. Reducing the dietary P level is a common approach for decreasing the P discharge but it may result in increased risk of P deficiency leading to vertebral deformities. However, the molecular mechanism of vertebral deformities is poorly understood. We assessed vertebral transcriptome and compared the genes associated with bone metabolism in Japanese seabass (Lateolabrax japonicus) fed three diets containing different P and Ca levels including: diet I (0.4% P, 0.3% Ca), diet II (0.8% P, 0.3% Ca) and diet III (0.8% P, 3% Ca). The results showed that P deficiency reduces the ossification of vertebrae and induces visible vertebral deformities. Moreover, 256 gens were up-regulated and 125 genes were down-regulated in fish fed P deficient diets. Furthermore, administration of the diet with adequate P and Ca excess (diet III) resulted in the significant enhancement in expression of 19 genes and reduced expression of 93 genes. Comparing group II with group III, expression of 109 genes was up-regulated and expression of 1369 genes was down-regulated. Gene ontology enrichment analysis revealed significant alterations in biological functions by P deficiency. In summary, these findings indicated that both dietary P shortage and Ca excess lead to reduced differentiation and proliferation of osteoblast and induce a higher activity of osteoclastogenesis, which could subsequently impair vertebral mineralization and cause skeletal deformities.


Assuntos
Ração Animal , Cálcio/análise , Peixes/genética , Fósforo/análise , Coluna Vertebral/metabolismo , Transcriptoma , Ração Animal/análise , Animais , Cálcio/administração & dosagem , Osteoblastos/citologia , Osteoclastos/citologia , Fósforo/administração & dosagem , Fósforo/deficiência , Coluna Vertebral/anormalidades , Coluna Vertebral/citologia
13.
Fish Shellfish Immunol ; 84: 848-856, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30381267

RESUMO

p38 mitogen-activated protein kinase (MAPK) is an important protein which plays a key role in regulating the innate immunity, so exploring its molecular characterization is helpful in understanding the resistance against microbial infections in cultured fish. Here, a full-length cDNA of p38 MAPK was cloned from liver of blunt snout bream (Megalobrama amblycephala) which covered 2419 bp with an open reading frame of 1086 bp encoding 361 amino acids. p38 MAPK contained the characteristic structures of Thr-Gly-Tyr (TGY) motif and substrate binding site Ala-Thr-Arg-Trp (ATRW), which are conserved in MAPK family. To investigate p38 MAPK functions, two in vivo experiments were carried out to examine its expression following ammonia exposure and bacterial challenge. Also, an in vitro experiment was conducted to assess the role of p38 MAPK in inflammation of primary hepatocytes induced by lipopolysaccharide (LPS). The results showed the ubiquitous expression of p38 MAPK in all the tested tissues with varying levels. p38 MAPK mRNA expression was significantly up-regulated by ammonia stress and Aeromonas hydrophila challenge, and altered in a time-dependent manner. Moreover, the results indicated that the inflammatory response induced by LPS in hepatocytes is p38 MAPK dependent as knockdown of p38 MAPK using siRNA technology depressed the expression of IL-1ß and IL-6. The findings in this study showed that p38 MAPK has anti-stress property, and plays key role in protection against bacterial infection and inflammation in blunt snout bream.


Assuntos
Cyprinidae/genética , Cyprinidae/imunologia , Doenças dos Peixes/imunologia , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/imunologia , Aeromonas hydrophila/fisiologia , Sequência de Aminoácidos , Amônia/efeitos adversos , Animais , Sequência de Bases , Proteínas de Peixes/química , Proteínas de Peixes/genética , Proteínas de Peixes/imunologia , Perfilação da Expressão Gênica/veterinária , Infecções por Bactérias Gram-Negativas/imunologia , Imunidade Celular/genética , Lipopolissacarídeos/farmacologia , Filogenia , Distribuição Aleatória , Alinhamento de Sequência/veterinária , Proteínas Quinases p38 Ativadas por Mitógeno/química
14.
Fish Physiol Biochem ; 45(1): 83-91, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29984398

RESUMO

Fatty liver of cultured fish often correlates closely with poor growth and low harvest yield. Some Chinese herbs can reduce hepatic fat storage. This study aimed to examine lipid-lowering effect of berberine (BBR) in blunt snout bream (Megalobrama amblycephala). Triplicate groups of fish were fed four experimental diets: low-fat diet (LFD, 5% fat), high-fat diet (HFD, 15% fat), and HFD supplemented with 50 or 100 mg BBR/kg diet (BBR50, BBR100). After 8-week feeding, growth performance, liver histology and fat deposition, and hepatic genes expression were examined. The results showed significant reduction of growth performance and feed intake in fish fed HFD compared to those fed the LFD and BBR50 diets. Supplementing 50 mg BBR/kg to the HFD significantly improved weight gain and feed intake. Higher hepatic fat content and histological abnormalities were found in the liver of fish receiving HFD, and BBR50 and BBR100 could attenuate these abnormalities of liver. Expression of CPT I, AOX, ApoB100, ApoE, and PGC-1α genes was significantly decreased in fish fed HFD, and 50 and 100 mg/kg BBR supplementation could revert the downregulation of these genes. Also, the expression of FATP, LPL, and LDLR genes was upregulated in HFD-fed fish, and their expression was significantly decreased by 50 and 100 mg/kg BBR supplementation. In conclusion, supplementing BBR to HFD could attenuate liver fat deposition and disorders. The fat-lowering effects of BBR appear to be mediated by activating genes related with fatty acid oxidation and decreasing genes for fatty acid uptake.


Assuntos
Ração Animal/análise , Berberina/farmacologia , Cyprinidae/crescimento & desenvolvimento , Dieta Hiperlipídica/veterinária , Metabolismo dos Lipídeos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Animais , Dieta/veterinária , Regulação da Expressão Gênica/efeitos dos fármacos , Distribuição Aleatória
15.
Fish Shellfish Immunol ; 84: 987-997, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30403972

RESUMO

This study examined the effects of replacing fish meal (FM) with three different types of soybean meal (SM) including untreated SM, Bacillus pumillus SE5 (BP) fermented SM (BPFSM) and Pseudozyma aphidis ZR1 (PA) fermented SM (PAFSM) in diets for Japanese seabass (Lateolabrax japonicus). A basal diet was formulated using FM (FM diet), and six other diets were produced by substituting 40 or 80% of FM with SM, BPFSM or PAFSM (SM40, SM80, BPFSM40, BPFSM80, PAFSM40 and PAFSM80 diets). Each diet was fed to triplicate groups of fish (7.14 ±â€¯0.05 g) twice daily for eight weeks. Replacing 40% of FM with SM sources did not significantly influence growth (P > 0.05), while increasing the substitution level to 80% led to reduced growth rates (P < 0.05). The groups received SM80 and PAFSM80 diets showed significantly higher feed conversion ratio and lower protein digestibility than FM group. Furthermore, notably lower dry matter digestibility was detected in SM80 group. Remarkably lower serum total antioxidant capacity was found in the SM80 group, and catalase activity did not significantly differ between FM and BPFSM40 groups. Serum malondialdehyde concentration was enhanced by increasing FM replacement level and the highest value was observed in the SM80 fed fish. FM and PAFSM40 groups showed significantly higher lysozyme activity than the SM80 group. Fish fed the BPFSM40 diet exhibited the highest complement C3 activity and the lowest value was observed in the SM80 group. Expression of lysozyme gene in spleen was down-regulated in the SM80 group, and no significant difference in expression of C3 gene was found among FM, BPFSM40 and PAFSM40 groups. Digestive enzymes activity and gut morphology were significantly influenced by FM replacement. Expression of HSP70 and pro-inflammatory genes including TNF-α and IL-1ß were up-regulated by FM replacement and relatively lower expression levels were found by using fermented SM. An opposite trend was observed for the anti-inflammatory TGF-ß gene expression. Serum d-lactate concentration was significantly increased by replacing 80% of FM with any of the SM sources. These findings indicated that using fermented SM, particularly BPFSM, beneficially influences feed utilization, antioxidant capacity, innate immunity and gut health in juvenile Japanese seabass.


Assuntos
Ração Animal/análise , Bacillus/química , Bass/fisiologia , Expressão Gênica/imunologia , Imunidade Inata/genética , Ustilaginales/química , Fenômenos Fisiológicos da Nutrição Animal/efeitos dos fármacos , Animais , Bass/genética , Bass/crescimento & desenvolvimento , Bass/imunologia , Dieta/veterinária , Fermentação , Trato Gastrointestinal/anatomia & histologia , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/enzimologia , Distribuição Aleatória , Glycine max
16.
Fish Shellfish Immunol ; 80: 405-415, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29908322

RESUMO

This study evaluated the effects of supplementing chitooligosaccharide (COS) in low fish meal (FM) diets on growth, immune response, intestine and hepatopancrease histology, and expression of inflammatory and immune-related genes in Pacific white shrimp (Litopenaeus vannamei). A basal diet was formulated using FM and soybean meal (SM) as primary protein sources and considered as a high FM (HFM) diet, then a low FM (LFM) diet was prepared by substituting 50% of FM with SM and supplemented with 0, 0.3, 0.6, 0.9, 1.2 or 1.5 g COS kg-1 diet (LFM, COS3, COS6, COS9, COS12 and COS15 diets). Each diet was fed to quadruplicate groups of shrimp (0.9 g) to apparent satiation three times daily for eight weeks. At the end of the experiment no significant changes in growth and survival rate were observed among treatments (P > 0.05). FM replacement led to significant (P < 0.05) reduction of serum lysozyme activity and significant improvements were obtained by adding 0.3 or 0.6 g kg-1 COS to the LFM diet. A significant decrease in nitric oxide synthase activity was found in LFM group and no beneficial effects could be achieved by COS application. LFM group showed higher hepatopancrease superoxide dismutase and glutathione peroxidase activities than HFM group and further enhancements were obtained by COS application. Hepatopancrease total antioxidant capacity and alkaline phosphatase activity decreased in LFM group and COS supplementation improved their values. Expression of lysozyme, crustin, Pen3 and proPo genes were significantly up-regulated in hepatopancrease of groups received 0.3-0.9 g COS kg-1 diet. FM substitution enhanced the expression of HSP70 and inflammatory genes such as AIF and TNF in hepatopancrease and intestine, and COS administration at a moderate level down-regulated their expression level. Remarkable enhancement in intestinal fold height was obtained by inclusion of 0.3 or 0.6 g COS kg-1 diet compared to the group received LFM diet. Shrimps fed HFM and COS containing diets exhibited higher number of E-cells within their hepatopancrease tubules than the LFM group. The findings in this study clearly demonstrated that COS could enhance non-specific immune response and antioxidant activity, and ameliorate the negative impacts of high SM diets on gut and hepatopancrease health in pacific white shrimp. The optimum inclusion level of COS seems to be 0.3-0.6 g kg-1 of diet.


Assuntos
Ração Animal , Quitina/análogos & derivados , Penaeidae/efeitos dos fármacos , Fosfatase Alcalina/metabolismo , Animais , Quitina/farmacologia , Quitosana , Dieta/veterinária , Peixes , Expressão Gênica/imunologia , Glutationa Peroxidase/metabolismo , Hepatopâncreas/efeitos dos fármacos , Hepatopâncreas/metabolismo , Imunidade Inata/efeitos dos fármacos , Intestinos/anatomia & histologia , Intestinos/efeitos dos fármacos , Muramidase/sangue , Oligossacarídeos , Penaeidae/genética , Penaeidae/crescimento & desenvolvimento , Penaeidae/imunologia , Glycine max , Superóxido Dismutase/metabolismo
17.
Front Physiol ; 9: 1957, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30733687

RESUMO

PGC1α is a transcriptional coactivator that plays key roles in mitochondrial biogenesis, so exploring its molecular characterization contributes to the understanding of mitochondrial function in cultured fish. In the present study, a full-length cDNA coding PGC1α was cloned from the liver of blunt snout bream (Megalobrama amblycephala) which covered 3741 bp with an open reading frame of 2646 bp encoding 881 amino acids. Sequence alignment and phylogenetic analysis revealed high conservation with other fish species, as well as other higher vertebrates. Comparison of the derived amino acid sequences indicates that, as with other fish, there is a proline at position 176 (RIRP) compared to a Thr in the mammalian sequences (RIRT). To investigate PGC1α function, three in vitro tests were carried out using primary hepatocytes of blunt snout bream. The effect of AMPK activity on the expression of PGC1α was determined by the culture of the hepatocytes with an activator (Metformin) or inhibitor (Compound C) of AMPK. Neither AMPK activation nor inhibition altered PGC1α expression. Knockdown of PGC1α expression in hepatocytes using small interfering RNA (si-RNA) was used to determine the role of PGC1α in mitochondrial biogenesis. No significant differences in the expression of NRF1 and TFAM, and mtDNA copy number were found between control and si-RNA groups. Also, hepatocytes were cultured with oleic acid, and the findings showed the significant reduction of mtDNA copy number in oleic acid group compared to control. Moreover, oleic acid down-regulated the expression of NRF1 and TFAM genes, while PGC1α expression remained unchanged. Our findings support the proposal that PGC1α may not play a role in mitochondrial biogenesis in blunt snout bream hepatocytes.

18.
Fish Shellfish Immunol ; 70: 164-173, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28882791

RESUMO

An 8-week feeding trial was undertaken to evaluate supplemental effects of AviPlus® (AP), a blend of organic acids [citric acid, 25%; sorbic acid, 16.7%] and essential oils [thymol, 1.7%; vanillin, 1.0%], on growth, gut microbiota, innate immunity and disease resistance of Pacific white shrimp (Litopenaeus vannamei) against Vibrio parahaemolyticus. A basal experimental diet was formulated and supplemented with 0, 0.3, 0.6, 0.9 and 1.2 g kg-1 AP to produce five test diets (Con, AP0.3, AP0.6, AP0.9 and AP1.2). Each diet was fed to triplicate groups of shrimp (0.2 ± 0.01 g, mean ± SE) to apparent satiation three times daily. Growth performance and survival rate were not significantly influenced by AP supplementation (P > 0.05). Significantly (P < 0.05) higher serum total protein was found in groups fed ≥ 0.6 g kg-1 AP compared to control. Serum alkaline phosphatase and phenoloxidase activities were significantly increased in AP0.9 and AP1.2 groups. Also, the group received AP0.6 diet showed significantly higher glutathione peroxidase activity than control. Expression of gut pro-inflammatory genes including TNF-α, LITAF and RAB6A were down-regulated by AP administration. Gut microbiota analysis showed the significant enhancement of the operational taxonomic unit (OTU) diversity and richness indices by AP application. AP supplementation led to increased abundance of Firmicutes and a reduction in abundance of Proteobacteria. Also, dietary inclusion of 1.2 g kg-1 AP led to a significant increase in the abundance of Lactobacillus in shrimp gut. The group offered AP0.3 diet showed significantly higher disease resistance than control group. Furthermore, AP application significantly enhanced relative expression of immune related genes including lysozyme, penaeidin and catalase at 48 h post challenge. In conclusion, these findings show that the tested organic acids and essential oils mixture beneficially affects intestinal microflora and improves immune response and disease resistance of L. vannamei.


Assuntos
Ácido Cítrico/metabolismo , Microbioma Gastrointestinal/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Óleos Voláteis/metabolismo , Penaeidae/imunologia , Ácido Sórbico/metabolismo , Vibrio parahaemolyticus/fisiologia , Ração Animal/análise , Animais , Benzaldeídos/administração & dosagem , Benzaldeídos/metabolismo , Ácido Cítrico/administração & dosagem , Dieta , Suplementos Nutricionais/análise , Óleos Voláteis/administração & dosagem , Penaeidae/crescimento & desenvolvimento , Ácido Sórbico/administração & dosagem , Timol/administração & dosagem , Timol/metabolismo
19.
Artigo em Inglês | MEDLINE | ID: mdl-28822867

RESUMO

Fish farming seriously influences the aquatic environment because most dietary phosphorus (P) is excreted in the effluent. To increase the P utilization in fish, molecular techniques should be explored given the remarkable development of these techniques. Thus, to identify the candidate genes related to P utilization and molecular alterations following administration of a P-deficient diet in seabass Lateolabrax japonicus, we assessed the de novo pituitary, gill, intestine, liver, kidney, scales and vertebra transcriptomes, and we compared the expression of hepatic genes with three diets varying in P and Ca levels: diet I (0.4% P, 0.3% Ca), diet II (0.8% P, 0.3% Ca), and diet III (0.8% P, 3% Ca). In total, we identified 99,392 unigenes, and 37,086 (37.31%) unigenes were annotated. The results showed that 48 unigenes were significantly (P<0.05) up-regulated, while 55 genes were significantly down-regulated in the liver of group I compared with group II. Offering the P-sufficient and high Ca diet, diet III significantly up-regulated 24 unigenes and down-regulated 46 genes in the liver. There were significant differences in the regulation of 8 unigenes (3 up-regulated and 5 down-regulated) between groups II and III. Gene ontology (GO) functional enrichment and KEGG pathway analysis of differently expressed genes were performed for each pair of groups. The GO analysis showed that a large number of biological processes were significantly altered between P-deficient and P-sufficient treatments (I vs II and I vs III). Comparing group I and group II, seven KEGG terms were enriched significantly: glycine, serine and threonine metabolism, one carbon pool by folate, arginine and proline metabolism, the biosynthesis of unsaturated fatty acids, fatty acid elongation, drug metabolism-cytochrome P450, and fatty acid metabolism. There was no significantly enriched KEGG pathway between groups II and III. In conclusion, our study revealed that a P-deficient diet could increase catabolism and decrease anabolism of protein, as highlighted by low protein efficiency in fish fed the P-deficient diet. Furthermore, P-deficiency could motivate the biosynthesis of fatty acids. However, the dietary Ca level had no significant effect on the growth and expression of hepatic genes in L. japonicus.


Assuntos
Bass/metabolismo , Cálcio da Dieta/metabolismo , Fígado/metabolismo , Fósforo na Dieta/metabolismo , Transcriptoma/fisiologia , Animais , Bass/genética , Bass/fisiologia , Cálcio da Dieta/análise , Proteínas Alimentares/química , Proteínas Alimentares/metabolismo , Ácidos Graxos/metabolismo , Perfilação da Expressão Gênica , Fígado/química , Fósforo/deficiência , Fósforo na Dieta/análise , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Transcriptoma/genética
20.
Fish Shellfish Immunol ; 45(2): 858-68, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26074096

RESUMO

This study was conducted to evaluate the supplemental effects of three different types of protein hydrolysates in a low fish meal (FM) diet on growth performance, feed utilization, intestinal morphology, innate immunity and disease resistance of juvenile red sea bream. A FM-based diet was used as a high fish meal diet (HFM) and a low fish meal (LFM) diet was prepared by replacing 50% of FM by soy protein concentrate. Three other diets were prepared by supplementing shrimp, tilapia or krill hydrolysate to the LFM diet (designated as SH, TH and KH, respectively). Triplicate groups of fish (4.9 ± 0.1 g) were fed one of the test diets to apparent satiation twice daily for 13 weeks and then challenged by Edwardsiella tarda. At the end of the feeding trial, significantly (P < 0.05) higher growth performance was obtained in fish fed HFM and hydrolysate treated groups compared to those fed the LFM diet. Significant improvements in feed conversion and protein efficiency ratios were obtained in fish fed the hydrolysates compared to those fed the LFM diet. Significant enhancement in digestibility of protein was found in fish fed SH and KH diets and dry matter digestibility was increased in the group fed SH diet in comparison to LFM group. Fish fed the LFM diet showed significantly higher glucose level than all the other treatments. Whole-body and dorsal muscle compositions were not significantly influenced by dietary treatments. Histological analysis revealed significant reductions in goblet cell numbers and enterocyte length in the proximal intestine of fish fed the LFM diet. Superoxide dismutase activity and total immunoglobulin level were significantly increased in fish fed the diets containing protein hydrolysates compared to the LFM group. Also, significantly higher lysozyme and antiprotease activities were found in fish fed the hydrolysates and HFM diets compared to those offered LFM diet. Fish fed the LFM diet exhibited the lowest disease resistance against E. tarda and dietary inclusion of the hydrolysates resulted in significant enhancement of survival rate. The results of the current study indicated that the inclusion of the tested protein hydrolysates, particularly SH, in a LFM diet can improve growth performance, feed utilization, digestibility, innate immunity and disease resistance of juvenile red sea bream.


Assuntos
Suplementos Nutricionais , Resistência à Doença , Edwardsiella tarda/fisiologia , Infecções por Enterobacteriaceae/veterinária , Doenças dos Peixes/imunologia , Perciformes , Hidrolisados de Proteína , Ração Animal/análise , Animais , Dieta/veterinária , Suplementos Nutricionais/análise , Infecções por Enterobacteriaceae/imunologia , Infecções por Enterobacteriaceae/microbiologia , Doenças dos Peixes/microbiologia , Perciformes/crescimento & desenvolvimento , Distribuição Aleatória
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...