Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 34(5): e2105868, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34652041

RESUMO

Conventional optical diffusers, such as thick volume scatterers (Rayleigh scattering) or microstructured surface scatterers (geometric scattering), lack the potential for on-chip integration and are thus incompatible with next-generation photonic devices. Dielectric Huygens' metasurfaces, on the other hand, consist of 2D arrangements of resonant dielectric nanoparticles and therefore constitute a promising material platform for ultrathin and highly efficient photonic devices. When the nanoparticles are arranged in a random but statistically specific fashion, diffusers with exceptional properties are expected to come within reach. This work explores how dielectric Huygens' metasurfaces can implement wavelength-selective diffusers with negligible absorption losses and nearly Lambertian scattering profiles that are largely independent of the angle and polarization of incident waves. The combination of tailored positional disorder with a carefully balanced electric and magnetic response of the nanoparticles is shown to be an integral requirement for the operation as a diffuser. The proposed metasurfaces' directional scattering performance is characterized both experimentally and numerically, and their usability in wavefront-shaping applications is highlighted. Since the metasurfaces operate on the principles of Mie scattering and are embedded in a glassy environment, they may easily be incorporated in integrated photonic devices, fiber optics, or mechanically robust augmented reality displays.

2.
Opt Express ; 29(14): 21562-21575, 2021 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-34265941

RESUMO

Laser-driven spacecrafts are promising candidates for explorations to outer space. These spacecrafts should accelerate to a fraction of the speed of light upon illumination with earth-based laser systems. There are several challenges for such an ambitious mission that needs to be addressed yet. A matter of utmost importance is the stability of the spacecraft during the acceleration. Furthermore, the spacecraft sails should effectively reflect the light without absorptive-overheating. To address these requirements, we propose the design of a lightweight, low-absorbing, high-reflective, and self-stabilizing curved metasurface made from c-Si nanoparticles. A method to determine the stability is presented and, based on the multipole expansion method, the rotational stability of the curved metasurfaces is examined and the optimal operating regime is identified. The curvature is shown to be beneficial for the overall stability of the metasurface. The validity of the method is verified through numerical simulations of the time evolution of the trajectory of an identified metasurface. The results show that curved metasurfaces are a promising candidate for laser-driven spacecrafts.

3.
Opt Express ; 28(11): 16511-16525, 2020 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-32549472

RESUMO

When considering light scattering from a sphere, the ratios between the expansion coefficients of the scattered and the incident field in a spherical basis are known as the Mie coefficients. Generally, Mie coefficients depend on many degrees of freedom, including the dimensions and electromagnetic properties of the spherical object. However, for fundamental research, it is important to have easy expressions for all possible values of Mie coefficients within the existing physical constraints and which depend on the least number of degrees of freedom. While such expressions are known for spheres made from non-absorbing materials, we present here, for the first time to our knowledge, corresponding expressions for spheres made from absorbing materials. To illustrate the usefulness of these expressions, we investigate the upper bound for the absorption cross section of a trimer made from electric dipolar spheres. Given the results, we have designed a dipolar ITO trimer that offers a maximal absorption cross section. Our approach is not limited to dipolar terms, but indeed, as demonstrated in the manuscript, can be applied to higher order terms as well. Using our model, one can scan the entire accessible parameter space of spheres for specific functionalities in systems made from spherical scatterers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...