Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-31511800

RESUMO

The multiwalled carbon nanotubes has a myriad of applications due to its unique electrical and mechanical properties. The biomedical application of multiwalled carbon nanotubes that have been reported include drug delivery, medical imaging, gene delivery, tissue regeneration, and diagnostics. Proper characterization is required to enhance the potential application of the multiwalled carbon nanotubes. Terahertz technology is a relatively unfamiliar spectrometric technique that show promise in efficiently characterizing multiwalled carbon nanotubes. In this paper, terahertz imaging was used to characterize multiwalled carbon nanotube in comparison with other characterization techniques, including transmission electron microscopy and field emission scanning electron microscopy. The average diameter of the carbon nanotubes from the reconstructed terahertz images was 48.54 nm, while the average length of a fiber was found to be approximately 1.2 µm. The multiwalled carbon nanotubes were additionally characterized by FTIR, Raman spectroscopy, and Energy-dispersive X-ray spectroscopy.

2.
Sci Rep ; 6: 30140, 2016 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-27443236

RESUMO

The objective of this investigation was to shed light on the nature of interaction of different organic dyes and an inorganic dye, Ruthenium (II) polypyridine complex, with TiO2 nanoparticles. TiO2 is commonly deployed as an efficient energy transfer electrode in dye sensitized solar cells. The efficiency of dye sensitized solar cells is a function of the interaction of a dye with the electrode material such as TiO2. To the best of our knowledge the present study is the first effort in the determination of terahertz absorbance signals, investigation of real-time dye permeation kinetics, and the surface profiling and 3D imaging of dye sensitized TiO2 films. Herein, we report that the terahertz spectra of the natural dye sensitized TiO2 films were distinctively different from that of the inorganic dye with prominent absorption of natural dyes occurring at approximately the same wavelength. It was observed that the permeation of the natural dyes were more uniform through the layers of the mesoporous TiO2 compared to the inorganic dye. Finally, defects and flaws on TiO2 film were easily recognized via surface profiling and 3D imaging of the films. The findings thus offer a new approach in characterization of dye sensitized solar cells.

3.
Biosens Bioelectron ; 82: 64-70, 2016 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-27040943

RESUMO

Terahertz scanning reflectometry, terahertz 3D imaging and terahertz time-domain spectroscopy have been used to identify features in human skin biopsy samples diagnosed for basal cell carcinoma (BCC) and compared with healthy skin samples. It was found from the 3D images that the healthy skin samples exhibit regular cellular pattern while the BCC skin samples indicate lack of regular cell pattern. The skin is a highly layered structure organ; this is evident from the thickness profile via a scan through the thickness of the healthy skin samples, where, the reflected intensity of the terahertz beam exhibits fluctuations originating from different skin layers. Compared to the healthy skin samples, the BCC samples' profiles exhibit significantly diminished layer definition; thus indicating a lack of cellular order. In addition, terahertz time-domain spectroscopy reveals significant and quantifiable differences between the healthy and BCC skin samples. Thus, a combination of three different terahertz techniques constitutes a conclusive route for detecting the BCC condition on a cellular level compared to the healthy skin.


Assuntos
Carcinoma Basocelular/diagnóstico por imagem , Detecção Precoce de Câncer/métodos , Neoplasias Cutâneas/diagnóstico por imagem , Pele/diagnóstico por imagem , Imagem Terahertz/métodos , Detecção Precoce de Câncer/instrumentação , Desenho de Equipamento , Humanos , Imageamento Tridimensional/instrumentação , Imageamento Tridimensional/métodos , Imagem Terahertz/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...