Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 4(19): 18061-18075, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31720509

RESUMO

A distinctive synthetic method for the efficient synthesis of multifunctional bimetallic plasmonic Au@Ag core@shell nanoparticles (NPs) with tunable size, morphology, and localized surface plasmon resonance (LSPR) using Triton X-100/hexanol-1/deionized water/cyclohexane-based water-in-oil (W/O) microemulsion (ME) is described. The W/O ME acted as a "true nanoreactor" for the synthesis of Au@Ag core@shell NPs by providing a confined and controlled environment and suppressing the nucleation, growth, agglomeration, and aggregation of the NPs. High-resolution transmission electron microscopic analysis of the synthesized Au@Ag core@shell NPs revealed an "unusual core@shell" contrast, and the selected area electron diffraction and Moiré patterns showed that Au layers are paralleled to Ag layers, thus indicating the formation of Au@Ag core@shell NPs. Interestingly, the UV-visible spectrum of the Au@Ag core@shell NPs exhibited enthralling plasmonic properties by introducing a high-frequency quadrupolar LSPR mode originated from the isolated Au@Ag NPs along with a low-frequency dipolar LSPR mode originated from the coupled Au@Ag NPs. The effective plasmonic enhancement of the Au@Ag core@shell NPs is attributed to the extreme enhancement of the localized electromagnetic field by coupling of the localized surface plasmons of the Au core and Ag shell. The mechanisms for the nucleation and growth of Au@Ag core@shell NPs in W/O ME have been proposed. A unique electron transfer phenomenon between the Au core and Ag shell is elucidated for better understanding and manipulation of the electronic properties, which evinced the development of Au@Ag core@shell NPs through suppression of the galvanic replacement reaction.

2.
J Phys Chem B ; 123(26): 5577-5587, 2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31184890

RESUMO

A mixture of two pure ionic liquids (ILs) or double salt ILs (DSILs) can push the limits of ILs in terms of unraveling their unique physicochemical properties and potential in clean technology. While the correlated ion dynamics and heterogeneity in the bulk of pure ILs have been reported, such a phenomenon at longer timescales in DSILs has never been elucidated. Here, a combination of temperature-dependent polarized dynamic light scattering and rheological measurements has been employed to reveal the presence of structural and ultraslow relaxation in three DSILs, each containing a 1-ethyl-3-methylimidazolium cation and two different anions. The slow relaxation caused by Brownian diffusion of cluster-like arrangements occurs at a timescale of a few to several hundred milliseconds; both the relaxation processes, nevertheless, are Arrhenius in nature. Notably, slow relaxation in the DSILs is much different compared to that in the pure ILs. The decay of intensity correlation functions (ICFs) and average hydrodynamic correlation length of the clusters and their response to temperature markedly vary with the nature of the two anions present in the DSILs. Stretched exponential analyses of the ICFs disclose the cluster-to-cluster transfer of ionic species as well as percolation dynamics among clusters. The identity of anions also governs whether the DSILs follow or violate the Stokes-Einstein relationship or not.

3.
J Colloid Interface Sci ; 514: 648-655, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29310094

RESUMO

HYPOTHESIS: Water in oil microemulsion (w/o) is a simple preparative route for nanoparticles where water droplets (dispersed in continuous oil medium and stabilized by surfactants and cosurfactants) act as nanoreactors to carry out chemical reactions. If polymeric matrix is incorporated inside the core of the microemulsions, it should prevent the agglomeration of nanoparticles after separation from microemulsions. Thus polymer nanocomposite films prepared from w/o microemulsions are expected to give narrow and homogeneous size distribution of nanoparticles throughout the polymer host. EXPERIMENTS: Silver/poly(vinyl alcohol) (Ag/PVA) nanocomposite film was successfully prepared, for the first time, using Triton X-100 (TX-100)/1-butanol/cyclohexane/water microemulsion. Reduction of the metal salt was carried out in the core of w/o microemulsion droplets containing PVA polymeric matrix. After separation from the microemulsion, Ag/PVA nanocomposite film was then prepared by solution casting method. The antibacterial activity of the nanocomposites was tested against Gram-negative, Escherichia coli and Gram-positive, Staphylococcus aureus by agar diffusion method. FINDINGS: Ag nanoparticles with an average diameter of 105 nm could be synthesized using PVA, whereas in the absence of PVA the nanoparticles agglomerated. The distribution of Ag nanoparticles on PVA surface of the nanocomposite film prepared using microemulsion was uniform, whereas the film prepared through in situ generation of Ag nanoparticles by chemical reduction process on PVA host showed non-uniform, coagulated, bunches of Ag nanoparticles. The film synthesized using microemulsion exhibited enhanced antibacterial efficacy compared to that prepared through in situ synthesis under the same test condition.


Assuntos
Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Nanocompostos/química , Álcool de Polivinil/farmacologia , Prata/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Antibacterianos/síntese química , Antibacterianos/química , Relação Dose-Resposta a Droga , Emulsões/síntese química , Emulsões/química , Emulsões/farmacologia , Testes de Sensibilidade Microbiana , Óleos/química , Tamanho da Partícula , Álcool de Polivinil/química , Prata/química , Relação Estrutura-Atividade , Propriedades de Superfície , Temperatura , Água/química
4.
J Phys Chem B ; 120(28): 6995-7002, 2016 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-27355977

RESUMO

Microemulsions comprising an ionic liquid (IL), 1-ethyl-3-methylimidazolium trifluoromethanesulfonate ([emim][OTf]), as the polar component, Triton X-100 as a surfactant, and cyclohexane as the nonpolar medium were prepared and characterized. Conductivity and dynamic viscosity data were critically analyzed to confirm dynamic percolation among the droplets that are in continuous motion, aggregation, and fission. The transition from oil-continuous phase to bicontinuous phase was observed at the conductance and viscosity percolation thresholds and sharp changes in the values of conductivity and dynamic viscosity could be identified. Dynamic light scattering measurements revealed swelling of the droplets, which varied within the hydrodynamic diameter range of 10-100 nm. Diffusivity of the droplets suggested less Brownian movement with increased amount of the IL. Moreover, changes in the droplet sizes and diffusivity with increase in IL content supported dynamic percolation within the systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...