Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Artif Intell ; 4: 718950, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047766

RESUMO

This work investigates the efficacy of deep learning (DL) for classifying C100 superconducting radio-frequency (SRF) cavity faults in the Continuous Electron Beam Accelerator Facility (CEBAF) at Jefferson Lab. CEBAF is a large, high-power continuous wave recirculating linac that utilizes 418 SRF cavities to accelerate electrons up to 12 GeV. Recent upgrades to CEBAF include installation of 11 new cryomodules (88 cavities) equipped with a low-level RF system that records RF time-series data from each cavity at the onset of an RF failure. Typically, subject matter experts (SME) analyze this data to determine the fault type and identify the cavity of origin. This information is subsequently utilized to identify failure trends and to implement corrective measures on the offending cavity. Manual inspection of large-scale, time-series data, generated by frequent system failures is tedious and time consuming, and thereby motivates the use of machine learning (ML) to automate the task. This study extends work on a previously developed system based on traditional ML methods (Tennant and Carpenter and Powers and Shabalina Solopova and Vidyaratne and Iftekharuddin, Phys. Rev. Accel. Beams, 2020, 23, 114601), and investigates the effectiveness of deep learning approaches. The transition to a DL model is driven by the goal of developing a system with sufficiently fast inference that it could be used to predict a fault event and take actionable information before the onset (on the order of a few hundred milliseconds). Because features are learned, rather than explicitly computed, DL offers a potential advantage over traditional ML. Specifically, two seminal DL architecture types are explored: deep recurrent neural networks (RNN) and deep convolutional neural networks (CNN). We provide a detailed analysis on the performance of individual models using an RF waveform dataset built from past operational runs of CEBAF. In particular, the performance of RNN models incorporating long short-term memory (LSTM) are analyzed along with the CNN performance. Furthermore, comparing these DL models with a state-of-the-art fault ML model shows that DL architectures obtain similar performance for cavity identification, do not perform quite as well for fault classification, but provide an advantage in inference speed.

2.
Sci Rep ; 10(1): 19726, 2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184301

RESUMO

A brain tumor is an uncontrolled growth of cancerous cells in the brain. Accurate segmentation and classification of tumors are critical for subsequent prognosis and treatment planning. This work proposes context aware deep learning for brain tumor segmentation, subtype classification, and overall survival prediction using structural multimodal magnetic resonance images (mMRI). We first propose a 3D context aware deep learning, that considers uncertainty of tumor location in the radiology mMRI image sub-regions, to obtain tumor segmentation. We then apply a regular 3D convolutional neural network (CNN) on the tumor segments to achieve tumor subtype classification. Finally, we perform survival prediction using a hybrid method of deep learning and machine learning. To evaluate the performance, we apply the proposed methods to the Multimodal Brain Tumor Segmentation Challenge 2019 (BraTS 2019) dataset for tumor segmentation and overall survival prediction, and to the dataset of the Computational Precision Medicine Radiology-Pathology (CPM-RadPath) Challenge on Brain Tumor Classification 2019 for tumor classification. We also perform an extensive performance evaluation based on popular evaluation metrics, such as Dice score coefficient, Hausdorff distance at percentile 95 (HD95), classification accuracy, and mean square error. The results suggest that the proposed method offers robust tumor segmentation and survival prediction, respectively. Furthermore, the tumor classification results in this work is ranked at second place in the testing phase of the 2019 CPM-RadPath global challenge.


Assuntos
Neoplasias Encefálicas/classificação , Neoplasias Encefálicas/mortalidade , Aprendizado Profundo , Processamento de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Redes Neurais de Computação , Algoritmos , Neoplasias Encefálicas/patologia , Feminino , Humanos , Masculino , Prognóstico , Taxa de Sobrevida
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...