Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 10: 557-560, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28070545

RESUMO

This paper presents an energy dissipation dataset of different reversible logic gates in quantum-dot cellular automata. The proposed circuits have been designed and verified using QCADesigner simulator. Besides, the energy dissipation has been calculated under three different tunneling energy level at temperature T=2 K. For estimating the energy dissipation of proposed gates; QCAPro tool has been employed.

2.
Nanoscale Res Lett ; 8(1): 228, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23676103

RESUMO

We fabricated a three-dimensional (3D) stacked Si nanodisk (Si-ND) array with a high aspect ratio and uniform size by using our advanced top-down technology consisting of bio-template and neutral beam etching processes. We found from conductive atomic microscope measurements that conductivity became higher as the arrangement was changed from a single Si-ND to two-dimensional (2D) and 3D arrays with the same matrix of SiC, i.e., the coupling of wave functions was changed. Moreover, our theoretical calculations suggested that the formation of minibands enhanced tunneling current, which well supported our experimental results. Further analysis indicated that four or more Si-NDs basically maximized the advantage of minibands in our structure. However, it appeared that differences in miniband widths between 2D and 3D Si-ND arrays did not affect the enhancement of the optical absorption coefficient. Hence, high photocurrent could be observed in our Si-ND array with high photoabsorption and carrier conductivity due to the formation of 3D minibands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...