Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Microdevices ; 23(3): 33, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34185161

RESUMO

Dielectrophoresis, an electrokinetic technique, can be used for contactless manipulation of micro- and nano-size particles suspended in a fluid. We present a 3-D microfluidic DEP device with an orthogonal electrode configuration that uses negative dielectrophoresis to trap spherical polystyrene micro-particles. Traps with three different basic geometric shapes, i.e. triangular, square, and circular, and a fixed trap area of around 900 µm2 were investigated to determine the effect of trap shape on dynamics and strength of particle trapping. Effects of trap geometry were quantitatively investigated by means of trap stiffness, with applied electric potentials from 6 VP-P to 10 VP-P at 1 MHz. Analyzing the trap stiffness with a trapped 4.42 µm spherical particle showed that the triangular trap is the strongest, while the square shape trap is the weakest. The trap stiffness grew more than eight times in triangular traps and six times in both square and circular traps when the potential of the applied electric field was increased from 6 VP-P to 10 VP-P at 1 MHz. With the maximum applied potential, i.e. 10 VP-P at 1 MHz, the stiffness of the triangular trap was 60% and 26% stronger than the square and circular trap, respectively. A finite element model of the microfluidic DEP device was developed to numerically compute the DEP force for these trap shapes. The findings from the numerical computation demonstrate good agreement with the experimental analysis. The analysis of three different trap shapes provides important insights to predict trapping location, strength of the trapping zone, and optimized geometry for high throughput particle trapping.


Assuntos
Técnicas Analíticas Microfluídicas , Eletricidade , Eletroforese , Dispositivos Lab-On-A-Chip , Poliestirenos
2.
Electrophoresis ; 42(5): 644-655, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33340119

RESUMO

Dielectrophoresis is a robust approach for the manipulation and separation of (bio)particles using microfluidic platforms. We developed a dielectrophoretic corral trap in a microfluidic device that utilizes negative dielectrophoresis to capture single spherical polystyrene particles. Circular-shaped micron-size traps were employed inside the device and the three-dimensional trap stiffness (restoring trapping force from equilibrium trapping location) was analyzed using 4.42 µm particles and 1 MHz of an alternating electric field from 6 VP-P to 10 VP-P . The trap stiffness increased exponentially in the x- and y-direction, and linearly in the z-direction. Image analysis of the trapped particle movements revealed that the trap stiffness is increased 608.4, 539.3, and 79.7% by increasing the voltage from 6 VP-P to 10 VP-P in the x-, y-, and z-direction, respectively. The trap stiffness calculated from a finite element simulation of the device confirmed the experimental results. This analysis provides important insights to predict the trapping location, strength of the trapping, and optimum geometry for single particle trapping and its applications such as single-molecule analysis and drug discovery.


Assuntos
Eletroforese/instrumentação , Eletroforese/métodos , Simulação por Computador , Desenho de Equipamento , Análise de Elementos Finitos , Técnicas Analíticas Microfluídicas/instrumentação , Microesferas , Nanopartículas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA