Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Sci Adv ; 10(11): eadk3250, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38489368

RESUMO

Natural wood has served as a foundational material for buildings, furniture, and architectural structures for millennia, typically shaped through subtractive manufacturing techniques. However, this process often generates substantial wood waste, leading to material inefficiency and increased production costs. A potential opportunity arises if complex wood structures can be created through additive processes. Here, we demonstrate an additive-free, water-based ink made of lignin and cellulose, the primary building blocks of natural wood, that can be used to three-dimensional (3D) print architecturally designed wood structures via direct ink writing. The resulting printed structures, after heat treatment, closely resemble the visual, textural, olfactory, and macro-anisotropic properties, including mechanical properties, of natural wood. Our results pave the way for 3D-printed wooden construction with a sustainable pathway to upcycle/recycle natural wood.

2.
IEEE Trans Biomed Eng ; 71(7): 2180-2188, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38335072

RESUMO

Terahertz (THz) metasurfaces based on high Q-factor electromagnetically induced transparency-like (EIT-like) resonances are promising for biological sensing. Despite this potential, they have not often been investigated for practical differentiation between cancerous and healthy cells. The present methodology relies mainly on refractive index sensing, while factors of transmission magnitude and Q-factor offer significant information about the tumors. To address this limitation and improve sensitivity, we fabricated a THz EIT-like metasurface based on asymmetric resonators on an ultra-thin and flexible dielectric substrate. Bright-dark modes coupling at 1.96 THz was experimentally verified, and numerical results and theoretical analysis were presented. An enhanced theoretical sensitivity of 550 GHz/RIU was achieved for a sample with a thickness of 13 µm due to the ultra-thin substrate and novel design. A two-layer skin model was generated whereby keratinocyte cell lines were cultured on a base of collagen. When NEB1-shPTCH (basal cell carcinoma (BCC)) were switched out for NEB1-shCON cell lines (healthy) and when BCC's density was raised from 1 × 105 to 2.5 × 105, a frequency shift of 40 and 20 GHz were observed, respectively. A combined sensing analysis characterizes different cell lines. The findings may open new opportunities for early cancer detection with a fast, less-complicated, and inexpensive method.


Assuntos
Neoplasias Cutâneas , Humanos , Neoplasias Cutâneas/patologia , Desenho de Equipamento , Linhagem Celular Tumoral , Espectroscopia Terahertz/métodos , Espectroscopia Terahertz/instrumentação , Queratinócitos/efeitos da radiação , Queratinócitos/citologia
3.
Water Environ Res ; 95(6): e10873, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37218371

RESUMO

A lysimeter study was conducted for 1 year to examine how the source of wastewater for irrigation impacted soil physicochemical properties and kikuyu grass (Pennisetum clandestinum) nutrient composition. The wastewater used included treated wastewater produced by a membrane bioreactor (MBR) and intermittently decanted aerated lagoon (IDAL) treatment systems. No significant differences were observed between the treatments regarding total nitrogen and total phosphorus across the depths of the columns. However, highly significant differences were observed for Na content of the soils at various depths. Remarkable differences were recorded for soil exchangeable K and Na at different depths. In contrast, soil exchangeable Ca and Mg experienced no significant differences concerning the depth of the columns. For kikuyu grass, sodium contents of the grasses irrigated with MBR and IDAL treated wastewaters increased more than 200% and 100%, respectively, when compared with the grass irrigated with tap water. Over the period of monitoring considered in this study, there was no sign of excessive soil salinity/sodicity issues. The MBR treated wastewater has the potential to supply the grass with a constant dosage of valuable nutrients such as N and P without the requirement of using chemical fertilizers. This reduces the risk of contamination of receiving waters and groundwater and enhances the recycling of the nutrients in the wastewater to achieve a circular economy of nutrients. PRACTITIONER POINTS: Application of treated wastewaters revealed no harmful effects on soil and plant nutritional properties over the study period. The membrane bioreactor (MBR) treated wastewater potentially supplies the grass with constant dosage of valuable nutrients in the absence of chemical fertilisers. Sodium contents of the grasses irrigated with MBR and IDAL treated wastewaters increased more than 200% and 100%, respectively. Soil soluble and exchangeable cations showed very similar trends of changes versus the depth of the soil over the study period.


Assuntos
Pennisetum , Poluentes do Solo , Solo/química , Águas Residuárias , Nutrientes , Sódio , Irrigação Agrícola , Poluentes do Solo/análise
4.
ACS Nano ; 17(1): 137-145, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36535017

RESUMO

Dehydrogenation of methanol (CH3OH) into direct current (DC) in fuel cells can be a potential energy conversion technology. However, their development is currently hampered by the high cost of electrocatalysts based on platinum and palladium, slow kinetics, the formation of carbon monoxide intermediates, and the requirement for high temperatures. Here, we report the use of graphene layers (GL) for generating DC electricity from microbially driven methanol dehydrogenation on underlying copper (Cu) surfaces. Genetically tractable Rhodobacter sphaeroides 2.4.1 (Rsp), a nonarchetypical methylotroph, was used for dehydrogenating methanol at the GL-Cu surfaces. We use electrochemical methods, microscopy, and spectroscopy methods to assess the effects of GL on methanol dehydrogenation by Rsp cells. The GL-Cu offers a 5-fold higher power density and 4-fold higher current density compared to bare Cu. The GL lowers charge transfer resistance to methanol dehydrogenation by 4 orders of magnitude by mitigating issues related to pitting corrosion of underlying Cu surfaces. The presented approach for catalyst-free methanol dehydrogenation on copper electrodes can improve the overall sustainability of fuel cell technologies.


Assuntos
Fontes de Energia Bioelétrica , Grafite , Metanol/química , Cobre/química , Grafite/química , Eletrodos
5.
Sci Adv ; 8(46): eadd3555, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36399576

RESUMO

The refining process of petroleum crude oil generates asphaltenes, which poses complicated problems during the production of cleaner fuels. Following refining, asphaltenes are typically combusted for reuse as fuel or discarded into tailing ponds and landfills, leading to economic and environmental disruption. Here, we show that low-value asphaltenes can be converted into a high-value carbon allotrope, asphaltene-derived flash graphene (AFG), via the flash joule heating (FJH) process. After successful conversion, we develop nanocomposites by dispersing AFG into a polymer effectively, which have superior mechanical, thermal, and corrosion-resistant properties compared to the bare polymer. In addition, the life cycle and technoeconomic analysis show that the FJH process leads to reduced environmental impact compared to the traditional processing of asphaltene and lower production cost compared to other FJH precursors. Thus, our work suggests an alternative pathway to the existing asphaltene processing that directs toward a higher value stream while sequestering downstream emissions from the processing.

6.
Materials (Basel) ; 15(21)2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36363129

RESUMO

The scarcity of useable water is severe and increasing in several regions of the Middle East, Central and Southern Asia, and Northern Africa. However, the earth's atmosphere contains 37.5 million billion gallons of water in the invisible vapor phase with fast replenishment. The United Nations Convention to Combat Desertification reports that by 2025 about 2.4 billion people will suffer from a lack of access to safe drinking water. Extensive research has been conducted during the last two decades to develop nature-inspired nanotechnology-based atmospheric water-harvesting technology (atmospheric water generator, AWG) to provide clean water to humanity. However, the performance of this technology is humidity sensitive, particularly when the relative humidity (RH) is high (>~80% RH). Moreover, the fundamental design principle of the materials system for harvesting atmospheric water is mostly unknown. In this work, we present a promising technology for solar energy-driven clean water production in arid and semi-arid regions and remote communities. A polymeric electrospun hybrid hydrogel consisting of deliquescent salt (CaCl2) and nanomaterials was fabricated, and the atmospheric water vapor harvesting capacity was measured. The harvested water was easily released from the hydrogel under regular sunlight via the photothermal effect. The experimental tests of this hybrid hydrogel (PAN/AM/graphene/CaCl2) demonstrated the feasibility of around 1.04 L of freshwater production per kilogram of the hydrogel (RH 60%). The synergistic effect enabled by photothermal materials and deliquescent salt in the hydrogel network architecture presents controllable interaction with water molecules, simultaneously realizing efficient water harvesting. This technology requires no additional input of energy. When considering the global environmental challenges and exploring the available technologies, a sustainable clean water supply for households, industry, and agriculture can be achieved from the air using this economical and practical technology.

7.
Chem Sci ; 13(33): 9655-9667, 2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36091887

RESUMO

The sensitivity of covalent organic frameworks (COFs) to pore collapse during activation processes is generally termed activation stability, and activation stability is important for achieving and maintaining COF crystallinity and porosity which are relevant to a variety of applications. However, current understanding of COF stability during activation is insufficient, and prior studies have focused primarily on thermal stability or on the activation stability of other porous materials, such as metal-organic frameworks (MOFs). In this work, we demonstrate and implement a versatile experimental approach to quantify activation stability of COFs and use this to establish a number of relationships between their pore size, the type of pore substituents, pore architecture, and structural robustness. Additionally, density functional theory calculations reveal the impact on both inter-and intra-layer interactions, which govern activation stability, and we demonstrate that activation stability can be systematically tuned using a multivariate synthesis approach involving mixtures of functionalized and unfunctionalized COF building blocks. Our findings provide novel fundamental insights into the activation stability of COFs and offer guidance for the design of more robust COFs.

8.
ACS Omega ; 7(14): 11777-11787, 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35449907

RESUMO

Operating microbial fuel cells (MFCs) under extreme pH conditions offers a substantial benefit. Acidic conditions suppress the growth of undesirable methanogens and increase redox potential for oxygen reduction reactions (ORRs), and alkaline conditions increase the electrocatalytic activity. However, operating any fuel cells, including MFCs, is difficult under such extreme pH conditions. Here, we demonstrate a pH-universal ORR ink based on hollow nanospheres of manganese oxide (h-Mn3O4) anchored with multiwalled carbon nanotubes (MWCNTs) on planar and porous forms of carbon electrodes in MFCs (pH = 3-11). Nanospheres of h-Mn3O4 (diameter ∼ 31 nm, shell thickness ∼ 7 nm) on a glassy carbon electrode yielded a highly reproducible ORR activity at pH 3 and 10, based on rotating disk electrode (RDE) tests. A phenomenal ORR performance and long-term stability (∼106 days) of the ink were also observed with four different porous cathodes (carbon cloth, carbon nanofoam paper, reticulated vitreous carbon, and graphite felt) in MFCs. The ink reduced the charge transfer resistance (R ct) to the ORR by 100-fold and 45-fold under the alkaline and acidic conditions, respectively. The current study promotes ORR activity and subsequently the MFC operations under a wide range of pH conditions, including acidic and basic conditions.

9.
Adv Mater ; 34(28): e2108855, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35246886

RESUMO

Additive manufacturing (AM) has gained significant attention due to its ability to drive technological development as a sustainable, flexible, and customizable manufacturing scheme. Among the various AM techniques, direct ink writing (DIW) has emerged as the most versatile 3D printing technique for the broadest range of materials. DIW allows printing of practically any material, as long as the precursor ink can be engineered to demonstrate appropriate rheological behavior. This technique acts as a unique pathway to introduce design freedom, multifunctionality, and stability simultaneously into its printed structures. Here, a comprehensive review of DIW of complex 3D structures from various materials, including polymers, ceramics, glass, cement, graphene, metals, and their combinations through multimaterial printing is presented. The review begins with an overview of the fundamentals of ink rheology, followed by an in-depth discussion of the various methods to tailor the ink for DIW of different classes of materials. Then, the diverse applications of DIW ranging from electronics to food to biomedical industries are discussed. Finally, the current challenges and limitations of this technique are highlighted, followed by its prospects as a guideline toward possible futuristic innovations.

10.
Adv Mater ; 33(51): e2104467, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34651334

RESUMO

Despite decades of research, metallic corrosion remains a long-standing challenge in many engineering applications. Specifically, designing a material that can resist corrosion both in abiotic as well as biotic environments remains elusive. Here a lightweight sulfur-selenium (S-Se) alloy is designed with high stiffness and ductility that can serve as an excellent corrosion-resistant coating with protection efficiency of ≈99.9% for steel in a wide range of diverse environments. S-Se coated mild steel shows a corrosion rate that is 6-7 orders of magnitude lower than bare metal in abiotic (simulated seawater and sodium sulfate solution) and biotic (sulfate-reducing bacterial medium) environments. The coating is strongly adhesive, mechanically robust, and demonstrates excellent damage/deformation recovery properties, which provide the added advantage of significantly reducing the probability of a defect being generated and sustained in the coating, thus improving its longevity. The high corrosion resistance of the alloy is attributed in diverse environments to its semicrystalline, nonporous, antimicrobial, and viscoelastic nature with superior mechanical performance, enabling it to successfully block a variety of diffusing species.

11.
Small ; 17(47): e2104487, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34676978

RESUMO

Friction-induced energy dissipation impedes the performance of nanomechanical devices. Nevertheless, the application of graphene is known to modulate frictional dissipation by inducing local strain. This work reports on the nanomechanics of graphene conformed on different textured silicon surfaces that mimic the cogs of a nanoscale gear. The variation in the pitch lengths regulates the strain induced in capped graphene revealed by scanning probe techniques, Raman spectroscopy, and molecular dynamics simulation. The atomistic visualization elucidates asymmetric straining of CC bonds over the corrugated architecture resulting in distinct friction dissipation with respect to the groove axis. Experimental results are reported for strain-dependent solid lubrication which can be regulated by the corrugation and leads to ultralow frictional forces. The results are applicable for graphene covered corrugated structures with movable components such as nanoelectromechanical systems, nanoscale gears, and robotics.


Assuntos
Grafite , Membrana Celular , Fricção , Simulação de Dinâmica Molecular , Silício
12.
Adv Mater ; 33(44): e2101589, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34561916

RESUMO

Hexagonal boron nitride (h-BN) has emerged as a strong candidate for two-dimensional (2D) material owing to its exciting optoelectrical properties combined with mechanical robustness, thermal stability, and chemical inertness. Super-thin h-BN layers have gained significant attention from the scientific community for many applications, including nanoelectronics, photonics, biomedical, anti-corrosion, and catalysis, among others. This review provides a systematic elaboration of the structural, electrical, mechanical, optical, and thermal properties of h-BN followed by a comprehensive account of state-of-the-art synthesis strategies for 2D h-BN, including chemical exfoliation, chemical, and physical vapor deposition, and other methods that have been successfully developed in recent years. It further elaborates a wide variety of processing routes developed for doping, substitution, functionalization, and combination with other materials to form heterostructures. Based on the extraordinary properties and thermal-mechanical-chemical stability of 2D h-BN, various potential applications of these structures are described.

13.
Sci Adv ; 7(28)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34233870

RESUMO

Ceramic materials, despite their high strength and modulus, are limited in many structural applications due to inherent brittleness and low toughness. Nevertheless, ceramic-based structures, in nature, overcome this limitation using bottom-up complex hierarchical assembly of hard ceramic and soft polymer, where ceramics are packaged with tiny fraction of polymers in an internalized fashion. Here, we propose a far simpler approach of entirely externalizing the soft phase via conformal polymer coating over architected ceramic structures, leading to damage tolerance. Architected structures are printed using silica-filled preceramic polymer, pyrolyzed to stabilize the ceramic scaffolds, and then dip-coated conformally with a thin, flexible epoxy polymer. The polymer-coated architected structures show multifold improvement in compressive strength and toughness while resisting catastrophic failure through a considerable delay of the damage propagation. This surface modification approach allows a simple strategy to build complex ceramic parts that are far more damage-tolerant than their traditional counterparts.

14.
Addict Behav ; 122: 107034, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34246036

RESUMO

BACKGROUND: Substance use research has focused on family history of alcohol use disorders but less on other addictions in biological family members. We examined how parental substance use history relates to reward system functioning, specifically nucleus accumbens (NAcc) and putamen activation at age 9-10 in the Adolescent Brain Cognitive Development (ABCD) Study. This research hopes to address limitations in prior literature by focusing analyses on a large, substance-naïve sample. METHOD: We included ABCD participants with valid Monetary Incentive Delay task fMRI Baseline data and parent substance use history at project baseline from Data Release 2.0 (N = 10,622). Parent-history-positive (PH+) participants had one or both biological parents with a history of two+problems with alcohol (n = 741; PH+A) and/or other drugs (n = 638; PH+D). Of participants who were parent-history-negative (PH-) for alcohol and/or drugs, a stratified random sample based on six sociodemographic variables was created and matched to the PH+group (PH-A n = 699; PH-D n = 615). The contrast of interest was anticipation of a large reward vs. neutral response. RESULTS: PH+A youth had more activation in the right NAcc during large reward anticipation than PH-A. PH+D youth showed enhanced left putamen activation during large reward anticipation than PH-D youth. Bayesian hypothesis testing showed moderate evidence (BF > 3) in favor of the null hypothesis. CONCLUSION: These findings suggest that pre-adolescents whose biological parents had a history of substance-related problems show small differences in reward processing compared to their PH- peers.


Assuntos
Alcoolismo , Transtornos Relacionados ao Uso de Substâncias , Adolescente , Antecipação Psicológica , Teorema de Bayes , Encéfalo/diagnóstico por imagem , Criança , Cognição , Família , Humanos , Imageamento por Ressonância Magnética , Motivação , Núcleo Accumbens , Pais , Recompensa
15.
Carcinogenesis ; 42(7): 975-983, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34003214

RESUMO

Basal cell carcinoma (BCC) is associated with aberrant Hedgehog (HH) signalling through mutational inactivation of PTCH1; however, there is conflicting data regarding MEK/ERK signalling in BCC and the signalling pathway interactions in these carcinomas. To address this, expression of active phospho (p) MEK and ERK was examined in a panel of 15 non-aggressive and 14 aggressive BCCs. Although not uniformly expressed, both phospho-proteins were detected in the nuclei and/or cytoplasm of normal and tumour-associated epidermal cells however, whereas phospho-MEK (pMEK) was present in all non-aggressive BCCs (14/14), phospho-ERK (pERK) was rarely expressed (2/14). In contrast pERK expression was more prevalent in aggressive tumours (11/14). Interestingly, pMEK was only localized to the tumour mass whereas pERK was expressed in tumours and stroma of aggressive BCCs. Similarly, pERK (but not pMEK) was absent in mouse BCC-like tumours derived from X-ray irradiated Ptch1+/- mice with stromal pERK observed in myofibroblasts of the aggressive variant as well as in the tumour mass. RNA sequencing analysis of tumour epithelium and stroma of aggressive and non-aggressive BCC revealed the upregulation of epidermal growth factor receptor- and ERK-related pathways. Angiogenesis and immune response pathways were also upregulated in the stroma compared with the tumour. PTCH1 suppressed NEB1 immortalized keratinocytes (shPTCH1) display upregulated pERK that can be independent of MEK expression. Furthermore, epidermal growth factor pathway inhibitors affect the HH pathway by suppressing GLI1. These studies reveal differential expression of pERK between human BCC subtypes that maybe active by a pathway independent of MEK.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/patologia , Carcinoma Basocelular/patologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Receptor Patched-1/fisiologia , Animais , Apoptose , Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Carcinoma Basocelular/genética , Carcinoma Basocelular/metabolismo , Proliferação de Células , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Humanos , Camundongos , Camundongos Knockout , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Fosforilação , Prognóstico , RNA-Seq , Células Estromais , Taxa de Sobrevida , Células Tumorais Cultivadas
16.
iScience ; 24(3): 102174, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33718827

RESUMO

Cementitious structures exhibit high compression strength but suffer from inherent brittleness. Conversely, nature creates structures using mostly brittle phases that overcome the strength-toughness trade-off, mainly through internalized packaging of brittle phases with soft organic binders. Here, we develop complex architectures of cementitious materials using an inverse replica approach where a soft polymer phase emerges as an external conformal coating. Architected polymer templates are printed, cement pastes are molded into these templates, and cementitious structures with thin polymer surface coating are achieved after the solubilization of sacrificial templates. These polymer-coated architected cementitious structures display unusual mechanical behavior with considerably higher toughness compared to conventional non-porous structures. They resist catastrophic failure through delayed damage propagation. Most interestingly, the architected structures show significant deformation recovery after releasing quasi-static loading, atypical in conventional cementitious structures. This approach allows a simple strategy to build more deformation resilient cementitious structures than their traditional counterparts.

17.
ACS Nano ; 15(2): 2520-2531, 2021 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-33492930

RESUMO

Two-dimensional materials such as graphene and molybdenum disulfide are often subject to out-of-plane deformation, but its influence on electronic and nanomechanical properties remains poorly understood. These physical distortions modulate important properties which can be studied by atomic force microscopy and Raman spectroscopic mapping. Herein, we have identified and investigated different geometries of line defects in graphene and molybdenum disulfide such as standing collapsed wrinkles, folded wrinkles, and grain boundaries that exhibit distinct strain and doping. In addition, we apply nanomechanical atomic force microscopy to determine the influence of these defects on local stiffness. For wrinkles of similar height, the stiffness of graphene was found to be higher than that of molybdenum disulfide by 10-15% due to stronger in-plane covalent bonding. Interestingly, deflated graphene nanobubbles exhibited entirely different characteristics from wrinkles and exhibit the lowest stiffness of all graphene defects. Density functional theory reveals alteration of the bandstructures of graphene and MoS2 due to the wrinkled structure; such modulation is higher in MoS2 compared to graphene. Using this approach, we can ascertain that wrinkles are subject to significant strain but minimal doping, while edges show significant doping and minimal strain. Furthermore, defects in graphene predominantly show compressive strain and increased carrier density. Defects in molybdenum disulfide predominantly show tensile strain and reduced carrier density, with increasing tensile strain minimizing doping across all defects in both materials. The present work provides critical fundamental insights into the electronic and nanomechanical influence of intrinsic structural defects at the nanoscale, which will be valuable in straintronic device engineering.

18.
Carbohydr Polym ; 255: 117400, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33436227

RESUMO

Metal sulfides have recently attracted broad attention for lithium-ion batteries (LIB) owing to their high theoretical capacity and long lifetime. However, the inferior structural integrity and low electron conductivity of metal sulfides limit their practical applications. A feasible strategy is to distribute these materials in conductive carbonaceous substrates with shapeable morphology. Here we report the design of free-standing films of tin sulfide (SnS) nanosheets distributed uniformly on carbonized bacterial cellulose (CBC) nanofibers. The SnS/CBC composites possess three dimensional interconnected nanostructures, which is crucial for the high conductivity and high lithium storage capacity. LIB using SnS/CBC as anode exhibits a reversible capacity of 872 mA h g-1 at 100 mA g-1 after 100 cycles, and the capacity remains as high as 527 mA h g-1 at 2000 mA g-1 after 1000 cycles. The free-standing sulfide-based nanocomposites with unique nanostructure composition and flexibility could be utilized as promising electrode materials for future LIB systems.

19.
ACS Nano ; 15(1): 447-454, 2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33381965

RESUMO

Graphene is a promising material for many biointerface applications in engineering, medical, and life-science domains. Here, we explore the protection ability of graphene atomic layers to metals exposed to aggressive sulfate-reducing bacteria implicated in corrosion. Although the graphene layers on copper (Cu) surfaces did not prevent the bacterial attachment and biofilm growth, they effectively restricted the biogenic sulfide attack. Interestingly, single-layered graphene (SLG) worsened the biogenic sulfide attack by 5-fold compared to bare Cu. In contrast, multilayered graphene (MLG) on Cu restricted the attack by 10-fold and 1.4-fold compared to SLG-Cu and bare Cu, respectively. We combined experimental and computational studies to discern the anomalous behavior of SLG-Cu compared to MLG-Cu. We also report that MLG on Ni offers superior protection ability compared to SLG. Finally, we demonstrate the effect of defects, including double vacancy defects and grain boundaries on the protection ability of atomic graphene layers.


Assuntos
Desulfovibrio , Grafite , Biofilmes , Cobre , Corrosão
20.
Viruses ; 12(10)2020 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-33023199

RESUMO

Mass mortalities of the larval stage of the giant freshwater prawn, Macrobrachium rosenbergii, have been occurring in Bangladesh since 2011. Mortalities can reach 100% and have resulted in an 80% decline in the number of hatcheries actively producing M. rosenbergii. To investigate a causative agent for the mortalities, a disease challenge was carried out using infected material from a hatchery experiencing mortalities. Moribund larvae from the challenge were prepared for metatranscriptomic sequencing. De novo virus assembly revealed a 29 kb single­stranded positive-sense RNA virus with similarities in key protein motif sequences to yellow head virus (YHV), an RNA virus that causes mass mortalities in marine shrimp aquaculture, and other viruses in the Nidovirales order. Primers were designed against the novel virus and used to screen cDNA from larvae sampled from hatcheries in the South of Bangladesh from two consecutive years. Larvae from all hatcheries screened from both years were positive by PCR for the novel virus, including larvae from a hatchery that at the point of sampling appeared healthy, but later experienced mortalities. These screens suggest that the virus is widespread in M. rosenbergii hatchery culture in southern Bangladesh, and that early detection of the virus can be achieved by PCR. The hypothesised protein motifs of Macrobrachium rosenbergii golda virus (MrGV) suggest that it is likely to be a new species within the Nidovirales order. Biosecurity measures should be taken in order to mitigate global spread through the movement of post-larvae within and between countries, which has previously been linked to other virus outbreaks in crustacean aquaculture.


Assuntos
Água Doce/virologia , Larva/virologia , Palaemonidae/virologia , Infecções por Vírus de RNA/mortalidade , Infecções por Vírus de RNA/veterinária , Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Animais , Aquicultura , Bangladesh/epidemiologia , Nodaviridae/genética , Nodaviridae/isolamento & purificação , Fases de Leitura Aberta , Filogenia , Vírus de RNA/genética , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...