Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38895844

RESUMO

Structure at the nanoscale in the organic phase of liquid-liquid extraction systems is often tied to separation performance. However, the weak interactions that drive extractant assembly lead to poorly defined structures that are challenging to identify. Here, we investigate the mechanism of water extraction for a malonamide extractant commonly applied to f-element separations. We measure extractant concentration fluctuations in the organic phase with small angle X-ray scattering (SAXS) before and after contact with water at fine increments of extractant concentration, finding no qualitative changes upon water uptake that might suggest significant nanoscopic reorganization of the solution. The critical composition for maximum fluctuation intensity is consistent with small water-extractant adducts. The extractant concentration dependence of water extraction is consistent with a power law close to unity in the low concentration regime, suggesting the formation of 1 : 1 water-extractant adducts as the primary extraction mechanism at low concentration. At higher extractant concentrations, the power law slope increases slightly, which we find is consistent with activity effects modeled using Flory-Huggins theory without introduction of additional extractant-water species. Molecular dynamics simulations are consistent with these findings. The decrease in interfacial tension with increasing extractant concentration shows a narrow plateau region, but it is not correlated with any change in fluctuation or water extraction trends, further suggesting no supramolecular organization such as reverse micellization. This study suggests that water extraction in this system is particularly simple: it relies on a single mechanism at all extractant concentrations, and only slightly enhances the concentration fluctuations characteristic of the dry binary extractant/diluent mixture.

2.
Cancer Res Commun ; 4(2): 496-504, 2024 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-38335301

RESUMO

Estrogen receptor-positive (ER+) breast cancer is not considered immunogenic and, to date, has been proven resistant to immunotherapy. Endocrine therapy remains the cornerstone of treatment for ER+ breast cancers. However, constitutively activating mutations in the estrogen receptor alpha (ESR1) gene can emerge during treatment, rendering tumors resistant to endocrine therapy. Although these mutations represent a pathway of resistance, they also represent a potential source of neoepitopes that can be targeted by immunotherapy. In this study, we investigated ESR1 mutations as novel targets for breast cancer immunotherapy. Using machine learning algorithms, we identified ESR1-derived peptides predicted to form stable complexes with HLA-A*0201. We then validated the binding affinity and stability of the top predicted peptides through in vitro binding and dissociation assays and showed that these peptides bind HLA-A*0201 with high affinity and stability. Using tetramer assays, we confirmed the presence and expansion potential of antigen-specific CTLs from healthy female donors. Finally, using in vitro cytotoxicity assays, we showed the lysis of peptide-pulsed targets and breast cancer cells expressing common ESR1 mutations by expanded antigen-specific CTLs. Ultimately, we identified five peptides derived from the three most common ESR1 mutations (D538G, Y537S, and E380Q) and their associated wild-type peptides, which were the most immunogenic. Overall, these data confirm the immunogenicity of epitopes derived from ESR1 and highlight the potential of these peptides to be targeted by novel immunotherapy strategies. SIGNIFICANCE: Estrogen receptor (ESR1) mutations have emerged as a key factor in endocrine therapy resistance. We identified and validated five novel, immunogenic ESR1-derived peptides that could be targeted through vaccine-based immunotherapy.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/genética , Receptores de Estrogênio/genética , Mutação , Imunoterapia , Peptídeos/genética
3.
Ann Surg Oncol ; 31(4): 2244-2252, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38161200

RESUMO

BACKGROUND: We sought to better define estrogen receptor-low-positive (ER-low+) breast cancer biology and determine the utility of the Oncotype DX Breast Recurrence Score® (RS) assay in this population. METHODS: Patients with information regarding percentage ER positivity and PAM50 subtype were identified in The Cancer Genome Atlas (TCGA) and subtype distribution was determined. Next, patients with ER-low+ (ER 1-10%), HER2- breast cancer undergoing upfront surgery with known RS result were identified in the National Cancer Database (NCDB) and our institutional Dana-Farber Brigham Cancer Center (DF/BCC) database; RS distribution was examined. Finally, patients with ER-low+, HER2- breast cancer treated at DF/BCC from 2011 to 2020 without prior RS results and in whom tissue was available to perform the assay were identified. RS results, treatment, recurrence and breast cancer-specific survival (BCSS) were determined. RESULTS: Of 1033 patients in TCGA, ER percentage and PAM50 subtype were available for 342 (33.1%) patients. Forty-six (13.5%) had ER-low+/HER2- tumors, among whom 82.6% were basal and 4.3% were luminal A. Among 3423 patients with ER-low+/HER2- disease in the NCDB, RS results were available for 689 (20.1%) patients; 67% had an RS ≥26. In our institutional database, only two patients with ER-low+/HER2- disease and an RS were identified, both with RS ≥26. Among 37 patients in our institutional cohort without prior RS, 35 (97.4%) had an RS ≥26, determined with testing. After a median follow-up of 40 months (range 3-106), three patients, all treated with chemotherapy, recurred. Three-year BCSS was 97.0% (95% confidence interval 96.9-97.1%). CONCLUSIONS: Most ER-low+/HER2- breast cancers are basal-like, with RS ≥26 suggesting these tumors are similar to triple-negative disease.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/patologia , Receptor ErbB-2/genética , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Receptores de Estrogênio/genética
4.
Acc Chem Res ; 56(24): 3616-3625, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38015808

RESUMO

ConspectusPolyoxometalates (POMs, metals = V4/5+, Nb5+, Ta5+, Mo5/6+, and W5/6+) can be described as molecular metal oxides. The V, Mo, and W-POMs (classic POMs) exhibit rich structural diversity with interesting redox properties, acid catalysis, inorganic ligands, and colorimetric properties and behavior. Nb and Ta POMs, while structurally similar, are generally stable only in base and redox behavior is rare, and they are synthetically far less accessible. The V, Mo, and W-POMs have been studied for well over a century, Nb-POM chemistry has emerged in the last 20 years, and Ta-POM chemistry is yet to see consistent and significant advances. Early and current success in Nb-POM chemistry is owed mainly to hydrothermal synthesis, which is wholly unsatisfying, given the black box nature of this technique.For the last 5 years and as summarized in this Account, we have exploited decaniobate, [Nb10O28]6- (Nb10), as a foundation to perform room-temperature, nearly pH-neutral manipulations of Nb-POM solutions. Nb10, with a rare neutral self-buffering pH, responds to any interactions with electrolytes (specifically oxoanions and metal cations) by undergoing transformations, leading to new topologies. The ease of Nb10 transformation yielding new generations of Nb-POMs, akin to an inorganic analogue of biological model organisms such as the fruit fly, inspired the title of this Account. The common building unit born from the disassembly of Nb10 is [Nb7O20(OH, H2O)2](5-7)-, and the hydroxyl/aqua ligands provide reactivity for linking via condensation reactions, ligand exchange, heterometals, or oxoanions. We can coax these newly assembled Nb-POMs (detected by small-angle X-ray scattering, SAXS) to crystallize via the usual methods of vapor diffusion, salting out, and reduced temperature, and the single-crystal X-ray diffraction structures are valuable for understanding reaction mechanisms to fine-tune control and yield a landscape of topologies and compositions. Beyond providing an opportunity to comprehend and diversify POM chemistry, the reactivity of Nb10 yields highly soluble (i.e., >2 M Nb), nearly neutral aqueous solutions of niobium, ideal for the solution-phase deposition of thin films, demonstrated with LiNbO3, (Na,K)NbO3, Nb2O5, and heterometal-doped Nb2O5. The obtained films are cohesive and smooth, enabled by the tendency of these solutions to gel if simply evaporated quickly.Per our current endeavors, this gelation behavior provides an opportunity to develop new soft, flexible materials including inorganic networks, organic-inorganic networks, and porous solids and explore their material properties including base catalysis and sorption (i.e., CO2). Nb-POM (and Ta-POM) discovery and implementation of properties is far from complete. While heterometal (d and f element) substitution is easy with classic POMs, imparting a whole host of functions (tuned luminescence, catalysis, electroactivity, etc.), it remains a challenge with Nb-POMs due to pH incompatibility with most heterometals. This grand challenge that defies fundamental aqueous behavior of metal cations requires the creation of liquid mixtures that include polymer and/or ionic liquid components, and the creation of such reaction media can impact synthesis beyond POM chemistry. The goal of this Account is to describe the recent advances in Nb-POM chemistry, afforded by the Nb10 "fruit fly", and to also provide insight into the next large steps needed to advance Nb-POM chemistry.

5.
Cancers (Basel) ; 15(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894298

RESUMO

Triple-negative breast cancer (TNBC), as one of the most aggressive forms of breast cancer, is characterized by a poor prognosis and a very low rate of disease-free and overall survival. In recent years, immunotherapeutic approaches targeting T cell checkpoint molecules, such as cytotoxic lymphocyte antigen-4 (CTLA-4), programmed death1 (PD-1) or its ligand, programmed death ligand 1 (PD-L1), have shown great potential and have been used to treat various cancers as single therapies or in combination with other modalities. However, despite this remarkable progress, patients with TNBC have shown a low response rate to this approach, commonly developing resistance to immune checkpoint blockade, leading to treatment failure. Extracellular acidosis within the tumor microenvironment (also known as the Warburg effect) is one of the factors preventing immune cells from mounting effective responses and contributing to immunotherapy treatment failure. Therefore, reducing tumor acidity is important for increasing cancer immunotherapy effectiveness and this has yet to be realized in the TNBC environment. In this study, the oral administration of sodium bicarbonate (NaHCO3) enhanced the antitumor effect of anti-PD-L1 antibody treatment, as demonstrated by generated antitumor immunity, tumor growth inhibition and enhanced survival in 4T1-Luc breast cancer model. Here, we show that NaHCO3 increased extracellular pH (pHe) in tumor tissues in vivo, an effect that was accompanied by an increase in T cell infiltration, T cell activation and IFN-γ, IL2 and IL12p40 mRNA expression in tumor tissues, as well as an increase in T cell activation in tumor-draining lymph nodes. Interestingly, these changes were further enhanced in response to combined NaHCO3 + anti-PD-L1 therapy. In addition, the acidic extracellular conditions caused a significant increase in PD-L1 expression in vitro. Taken together, these results indicate that alkalizing therapy holds potential as a new tumor microenvironment immunomodulator and we hypothesize that NaHCO3 can enhance the antitumor effects of anti-PD-L1 breast cancer therapy. The combination of these treatments may have an exceptional impact on future TNBC immunotherapeutic approaches by providing a powerful personalized medicine paradigm. Therefore, our findings have a great translational potential for improving outcomes in TNBC patients.

6.
Cureus ; 14(11): e31486, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36523711

RESUMO

Since the last century, methicillin-resistant Staphylococcus aureus (MRSA) bacteremia has become a major global and public health concern not only in terms of morbidity and mortality but also the duration of hospital stay, healthcare cost, and antimicrobial choices. Especially alarming is the growing antimicrobial resistance due to their misuse and overuse, which has led the world to be exhausted of its effective antibiotic resources. In this review article, we sought to figure out the most efficacious antimicrobial agents to treat MRSA-related bloodstream infections. We compared the data from reviewing reports from 2017 to 2022 and summarized their comparative efficacy and cost-effectiveness. Although we focused on vancomycin and daptomycin, which are the current Infectious Disease Society Of America (IDSA)-recommended antibiotics for MRSA bacteremia treatment, a deep dive into the newer agents revealed better efficacy and treatment outcome in the combination of ceftaroline (ß-lactam) with daptomycin compared to traditional standard monotherapy (vancomycin/daptomycin monotherapy). Also, the IDSA recommended high-dose daptomycin (8-10 mg/kg) therapy for MRSA bacteremia treatment to be more effective in cases with vancomycin-reduced susceptibility. Moreover, we did not find any trial or study describing the use of ceftaroline as a monotherapy to compare its efficacy in MRSA bacteremia with the current standard therapy. The upshot is that we need more large-scale clinical trials exploring in-depth effectiveness and adverse effects to decide on newer agents like ß-lactams to use as routine therapy for MRSA bacteremia.

7.
Inorg Chem ; 61(8): 3586-3597, 2022 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-35148102

RESUMO

Synthesizing functional materials from water contributes to a sustainable energy future. On the atomic level, water drives complex metal hydrolysis/condensation/speciation, acid-base, ion pairing, and solvation reactions that ultimately direct material assembly pathways. Here, we demonstrate the importance of Nb-polyoxometalate (Nb-POM) speciation in enabling deposition of Nb2O5, LiNbO3, and (Na, K)NbO3 (KNN) from high-concentration solutions, up to 2.5 M Nb for Nb2O5 and ∼1 M Nb for LiNbO3 and KNN. Deposition of KNN from 1 M Nb concentration represents a potentially important advancment in lead-free piezoelectrics, an application that requires thick films. Solution characterization via small-angle X-ray scattering and Raman spectroscopy described the speciation for all precursor solutions as the [HxNb24O72](x-24) POM, as did total pair distribution function analyses of X-ray scattering of amorphous gels prior to conversion to oxides. The tendency of the Nb24-POM to form extended networks without crystallization leads to conformal and well-adhered films. The films were characterized by X-ray diffraction, atomic force microscopy, scanning electron microscopy, ellipsometry, and X-ray photoelectron spectroscopy. As a strategy to convert aqueous deposition solutions from {Nb10}-POMs to {Nb24}-POMs, we devised a general procedure to produce doped Nb2O5 thin films including Ca, Ag, and Cu doping.

8.
Angew Chem Int Ed Engl ; 61(19): e202117839, 2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35148455

RESUMO

Polyoxometalates (POMs), ranging in size from 1 to 10's of nanometers, resemble building blocks of inorganic materials. Elucidating their complex solubility behavior with alkali-counterions can inform natural and synthetic aqueous processes. In the study of POMs ([Nb24 O72 H9 ]15- , Nb24 ) we discovered an unusual solubility trend (termed anomalous solubility) of alkali-POMs, in which Nb24 is most soluble with the smallest (Li+ ) and largest (Rb/Cs+ ) alkalis, and least soluble with Na/K+ . Via computation, we define a descriptor (σ-profile) and use an artificial neural network (ANN) to predict all three described alkali-anion solubility trends: amphoteric, normal (Li+ >Na+ >K+ >Rb+ >Cs+ ), and anomalous (Cs+ >Rb+ >K+ >Na+ >Li+ ). Testing predicted amphoteric solubility affirmed the accuracy of the descriptor, provided solution-phase snapshots of alkali-POM interactions, yielded a new POM formulated [Ti6 Nb14 O54 ]14- , and provides guidelines to exploit alkali-POM interactions for new POMs discovery.

9.
Schizophr Res ; 240: 61-70, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34952289

RESUMO

Lower N-methyl-d-aspartate receptor (NMDAR) GluN1 subunit levels and heightened neuroinflammation are found in the cortex in schizophrenia. Since neuroinflammation can lead to changes in NMDAR function, it is possible that these observations are linked in schizophrenia. We aimed to extend our previous studies by measuring molecular indices of NMDARs that define key functional properties of this receptor - particularly the ratio of GluN2A and GluN2B subunits - in dorsolateral prefrontal cortex (DLPFC) from schizophrenia and control cases (37/37). We sought to test whether changes in these measures are specific to the subset of schizophrenia cases with high levels of inflammation-related mRNAs, defined as a high inflammatory subgroup. Quantitative autoradiography was used to detect 'functional' NMDARs ([3H]MK-801), GluN1-coupled-GluN2A subunits ([3H]CGP-39653), and GluN1-coupled-GluN2B subunits ([3H]Ifenprodil). Quantitative RT-PCR was used to measure NMDAR subunit transcripts (GRIN1, GRIN2A and GRIN2B). The ratios of GluN2A:GluN2B binding and GRIN2A:GRIN2B mRNAs were calculated as an index of putative NMDAR composition. We found: 1) GluN2A binding, and 2) the ratios of GluN2A:GluN2B binding and GRIN2A:GRIN2B mRNAs were lower in schizophrenia cases versus controls (p < 0.05), and 3) lower GluN2A:GluN2B binding and GRIN2A:GRIN2B mRNA ratios were exaggerated in the high inflammation/schizophrenia subgroup compared to the low inflammation/control subgroup (p < 0.05). No other NMDAR-related indices were significantly changed in the high inflammation/schizophrenia subgroup. This suggests that neuroinflammation may alter NMDAR stoichiometry rather than targeting total NMDAR levels overall, and future studies could aim to determine if anti-inflammatory treatment can alleviate this aspect of NMDAR-related pathology.


Assuntos
Receptores de N-Metil-D-Aspartato , Esquizofrenia , Córtex Cerebral/metabolismo , Córtex Pré-Frontal Dorsolateral , Humanos , Inflamação , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/diagnóstico por imagem , Esquizofrenia/genética
10.
ACS Appl Mater Interfaces ; 13(16): 19497-19506, 2021 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-33856779

RESUMO

Polyoxometalate (POM)-based ionic liquids, with nearly infinite compositional variations to fine-tune antimicrobial and physical properties, function as water purification filters, anticorrosion/antibacterial coatings for natural stones, self-repairing acid-resistant coatings, catalysts, and electroactive, stable solvents. By combining hydrophobic quaternary ammonium cations (QACs; tetraheptylammonium and trihexyltetradecylammonium) with butyltin-substituted polyoxotungstates [(BuSn)3(α-SiW9O37)] via repeated solvent extraction-ion exchange, we obtained phase-pure hybrid POM salts (referred to as such because they melt above room temperature). If the solvent extraction process is performed only once, then solids with high salt contamination and considerably lower melting temperatures are obtained. Solution-phase behavior, based on POM-QAC interactions, was similar for all formulations in polar and nonpolar organic solvents, as observed by X-ray scattering and multinuclear magnetic resonance spectroscopy. However, solid thin films of the butyltin-functionalized hybrid POM salts were significantly more stable and adhesive than their inorganic analogues. We attribute this to the favorable hydrophobic interactions between the butyltin groups and the QACs. All synthesized hybrid POM salts display a potent antimicrobial activity toward Escherichia coli. These studies provide fundamental form-function understanding of hybrid POM salts, based on interactions between ions in these complex hybrid phases.

11.
Sci Rep ; 10(1): 1982, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029751

RESUMO

People with schizophrenia exhibit deficits in inhibitory neurons and cognition. The timing of maternal immune activation (MIA) may present distinct schizophrenia-like phenotypes in progeny. We investigated whether early gestation [gestational day (GD) 10] or late gestation (GD19) MIA, via viral mimetic polyI:C, produces deficits in inhibitory neuron indices (GAD1, PVALB, SST, SSTR2 mRNAs) within cortical, striatal, and hippocampal subregions of male adult rat offspring. In situ hybridisation revealed that polyI:C offspring had: (1) SST mRNA reductions in the cingulate cortex and nucleus accumbens shell, regardless of MIA timing; (2) SSTR2 mRNA reductions in the cortex and striatum of GD19, but not GD10, MIA; (3) no alterations in cortical or striatal GAD1 mRNA of polyI:C offspring, but an expected reduction of PVALB mRNA in the infralimbic cortex, and; (4) no alterations in inhibitory markers in hippocampus. Maternal IL-6 response negatively correlated with adult offspring SST mRNA in cortex and striatum, but not hippocampus. These results show lasting inhibitory-related deficits in cortex and striatum in adult offspring from MIA. SST downregulation in specific cortical and striatal subregions, with additional deficits in somatostatin-related signalling through SSTR2, may contribute to some of the adult behavioural changes resulting from MIA and its timing.


Assuntos
Inibição Neural/imunologia , Complicações Infecciosas na Gravidez/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Esquizofrenia/imunologia , Animais , Comportamento Animal , Biomarcadores/análise , Biomarcadores/metabolismo , Córtex Cerebral/patologia , Corpo Estriado/patologia , Modelos Animais de Doenças , Regulação para Baixo/imunologia , Feminino , Glutamato Descarboxilase/análise , Glutamato Descarboxilase/metabolismo , Hipocampo/patologia , Humanos , Interleucina-6/análise , Interleucina-6/metabolismo , Interneurônios/imunologia , Interneurônios/metabolismo , Interneurônios/patologia , Masculino , Poli I-C/imunologia , Gravidez , Ratos , Receptores de Somatostatina/análise , Receptores de Somatostatina/metabolismo , Esquizofrenia/patologia , Fatores Sexuais , Transdução de Sinais/imunologia , Somatostatina/análise , Somatostatina/metabolismo , Fatores de Tempo
12.
Front Psychiatry ; 8: 77, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28928676

RESUMO

BACKGROUND: Glutamatergic receptor [N-methyl-d-aspartate receptor (NMDAR)] alterations within cortex, hippocampus, and striatum are linked to schizophrenia pathology. Maternal immune activation (MIA) is an environmental risk factor for the development of schizophrenia in offspring. In rodents, gestational timing of MIA may result in distinct behavioral outcomes in adulthood, but how timing of MIA may impact the nature and extent of NMDAR-related changes in brain is not known. We hypothesize that NMDAR-related molecular changes in rat cortex, striatum, and hippocampus are induced by MIA and are dependent on the timing of gestational inflammation and sex of the offspring. METHODS: Wistar dams were treated the with viral mimic, polyriboinosinic:polyribocytidylic acid (polyI:C), or vehicle on either gestational day 10 or 19. Fresh-frozen coronal brain sections were collected from offspring between postnatal day 63-91. Autoradiographic binding was used to infer levels of the NMDAR channel, and NR2A and NR2B subunits in cortex [cingulate (Cg), motor, auditory], hippocampus (dentate gyrus, cornu ammonis area 3, cornu ammonis area 1), and striatum [dorsal striatum, nucleus accumbens core, and nucleus accumbens shell (AS)]. NR1 and NR2A mRNA levels were measured by in situ hybridization in cortex, hippocampus, and striatum in male offspring only. RESULTS: In the total sample, NMDAR channel binding was elevated in the Cg of polyI:C offspring. NR2A binding was elevated, while NR2B binding was unchanged, in all brain regions of polyI:C offspring overall. Male, but not female, polyI:C offspring exhibited increased NMDAR channel and NR2A binding in the striatum overall, and increased NR2A binding in the cortex overall. Male polyI:C offspring exhibited increased NR1 mRNA in the AS, and increased NR2A mRNA in cortex and subregions of the hippocampus. CONCLUSION: MIA may alter glutamatergic signaling in cortical and hippocampal regions via alterations in NMDAR indices; however, this was independent of gestational timing. Male MIA offspring have exaggerated changes in NMDAR compared to females in both the cortex and striatum. The MIA-induced increase in NR2A may decrease brain plasticity and contribute to the exacerbated behavioral changes reported in males and indicate that the brains of male offspring are more susceptible to long-lasting changes in glutamate neurotransmission induced by developmental inflammation.

13.
J Alzheimers Dis ; 42(4): 1443-60, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25024349

RESUMO

BACKGROUND: Imaging of human brain as well as cellular and animal models has highlighted a role for the actin cytoskeleton in the development of cell pathology in Alzheimer's disease (AD). Rods and aggregates of the actin-associated protein cofilin are abundant in grey matter of postmortem AD brain and rods are found inside neurites in animal and cell models of AD. OBJECTIVE: We sought further understanding of the significance of cofilin rods/aggregates to the disease process: Do rods/aggregates correlate with AD progression and the development of hallmark neurofibrillary tangles and neuropil threads? Are cofilin rods/aggregates found in the same neurites as hyperphosphorylated tau? METHODS: The specificity of rods/aggregates to AD compared with general aging and their spatial relationship to tau protein was examined in postmortem human hippocampus, inferior temporal cortex, and anterior cingulate cortex. RESULTS: The presence of cofilin rods/aggregates correlated with the extent of tau pathology independent of patient age. Densities of rods/aggregates were fourfold greater in AD compared with aged-matched control brains and rods/aggregates were significantly larger in AD brain. We did not find evidence for our hypothesis that intracellular cofilin rods are localized to tau-positive neuropil threads. Instead, data suggest the involvement of microglia in the clearance of cofilin rods/aggregates and/or in their synthesis in and around amyloid plaques and surrounding neuropil. CONCLUSION: Cofilin rods and aggregates signify events initiated early in the pathological cascade. Further definition of the mechanisms leading to their formation in the human brain will provide insights into the cellular causes of AD.


Assuntos
Fatores de Despolimerização de Actina/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Encéfalo/metabolismo , Encéfalo/patologia , Idoso , Idoso de 80 Anos ou mais , Envelhecimento/metabolismo , Envelhecimento/patologia , Western Blotting , Encéfalo/irrigação sanguínea , Feminino , Imunofluorescência , Proteína Glial Fibrilar Ácida/metabolismo , Humanos , Imageamento Tridimensional , Proteínas de Filamentos Intermediários/metabolismo , Masculino , Microglia/metabolismo , Microglia/patologia , Microscopia Confocal , Pessoa de Meia-Idade , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...