Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(5): e26661, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38444506

RESUMO

Hydrological management in the use of peatland for agriculture is the backbone of its sustainability and a critical factor in climate change mitigation. This study evaluates the application of an integrated water management practice known as the "Water Management Trinity" (WMT), implemented since 1986 on a coconut plantation on the eastern coast of Sumatra, in relation to CO2 emissions and subsidence rates. The WMT integrates canals, dikes, and dams with water gates to regulate water levels for both coconut agronomy and the preservation of the peat soil. The WMT has successfully regulated and maintained an average yearly water table depth of -45 to -51 cm below the surface. The methodology involved a closed chamber method for measuring soil CO2 flux using a portable Infrared Gas Analyzer, conducted weekly over a six-month period to cover dry and rainy season at bi-modal climate condition. Subsidence measurements have been ongoing from 1986 to 2022. The results show bare peat soil has heterotrophic respiration CO2 emissions of 7.77 t C-CO2 ha-1 yr-1, while in coconut plantations 7.99 t C-CO2 ha-1 yr-1, similar to emissions in mineral soils. Autotrophic respiration leads to the overestimation of CO2 emissions on peatland and accounts for 212-424% of the total emissions. The cumulative subsidence from 1986 to 2022 is -56.3 cm, with a soil rise of +0.8 cm in 2022, indicating a flattening rate of subsidence. This is characterized by an increase in bulk density at the surface from 0.072 to 0.144 gr/cm3, with approximately 81% of the subsidence being due to compaction. The statistical analysis found no relationship between water table depth and CO2 emissions, indicating that water table depth cannot be used as a predictor for CO2 emissions. In summary, peatland agriculture has a promising future when managed sustainably using an integrated hydrological management system.

2.
Environ Manage ; 63(4): 520-535, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30796465

RESUMO

Unprecedented challenges in urban management of water, waste and climate change-amplified by urbanisation and economic growth-are growing in Asia. In this circumstance, cities need to be aware of threats and opportunities to improve their capacity in addressing these challenges. This paper identifies priorities, barriers and enablers of these capacities. Through the City Blueprint® Approach-an integrated baseline assessment of the urban water cycle-11 Asian cities are assessed. Three cities are selected for an in-depth governance capacity analysis of their challenges with a focus on floods. Solid waste collection and treatment and access to improved drinking water and sanitation can be considered priorities, especially in cities with considerable slum populations. These people are also disproportionately affected by the impacts of climate-related hazards. The high variation of water management performance among Asian cities shows high potential for city-to-city learning by sharing best practices in water technology and governance. Combining interventions, i.e., by exploring co-benefits with other sectors (e.g., transport and energy) will increase efficiency, improve resilience, and lower the cost. Although governance capacities varied among cities, management of available information, monitoring and evaluation showed to be reoccurring points for improvement. Cities are also expected to increase implementation capacities using better policy, stricter compliance and preparedness next to promoting community involvement. Consequently, the city transformation process can be more concrete, efficient and inclusive.


Assuntos
Mudança Climática , Águas Residuárias , Ásia , Cidades , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...