Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 94(1): 013103, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36725578

RESUMO

Superconducting nanowire single-photon detectors are an enabling technology for modern quantum information science and are gaining attractiveness for the most demanding photon counting tasks in other fields. Embedding such detectors in photonic integrated circuits enables additional counting capabilities through nanophotonic functionalization. Here, we show how a scalable number of waveguide-integrated superconducting nanowire single-photon detectors can be interfaced with independent fiber optic channels on the same chip. Our plug-and-play detector package is hosted inside a compact and portable closed-cycle cryostat providing cryogenic signal amplification for up to 64 channels. We demonstrate state-of-the-art multi-channel photon counting performance with average system detection efficiency of (40.5 ± 9.4)% and dark count rate of (123 ± 34) Hz for 32 individually addressable detectors at minimal noise-equivalent power of (5.1 ± 1.2) · 10-18 W/Hz. Our detectors achieve timing jitter as low as 26 ps, which increases to (114 ± 17) ps for high-speed multi-channel operation using dedicated time-correlated single photon counting electronics. Our multi-channel single photon receiver offers exciting measurement capabilities for future quantum communication, remote sensing, and imaging applications.

2.
Nat Methods ; 13(3): 257-62, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26808668

RESUMO

We introduce a pattern-matching technique for efficient identification of fluorophore ratios in complex multidimensional fluorescence signals using reference fluorescence decay and spectral signature patterns of individual fluorescent probes. Alternating pulsed laser excitation at three different wavelengths and time-resolved detection on 32 spectrally separated detection channels ensures efficient excitation of fluorophores and a maximum gain of fluorescence information. Using spectrally resolved fluorescence lifetime imaging microscopy (sFLIM), we were able to visualize up to nine different target molecules simultaneously in mouse C2C12 cells. By exploiting the sensitivity of fluorescence emission spectra and the lifetime of organic fluorophores on environmental factors, we carried out fluorescence imaging of three different target molecules in human U2OS cells with the same fluorophore. Our results demonstrate that sFLIM can be used for super-resolution multi-target imaging by stimulated emission depletion (STED).


Assuntos
Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Microscopia Confocal/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Reconhecimento Automatizado de Padrão/métodos , Animais , Humanos , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
3.
Rev Sci Instrum ; 84(4): 043102, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23635176

RESUMO

Precisely timed detection of single photons plays an important role in the field of quantum information processing and fluorescence sensing. The method of time-correlated single photon counting is therefore constantly evolving and the associated instrumentation is being improved with new ideas and technologies. Simultaneous, time tagged readout of multiple detector channels is invaluable in many applications, spanning from fluorescence lifetime imaging in biology to the measurement of quantum optical correlations in basic research. Here we present a new integrated design, providing up to three independent input channels, a very short dead time, very high throughput, and a timing resolution of 25 ps at reasonable cost and small size. Apart from design features and test results of the instrument, we show an application in quantum optics, namely, the measurement of the photon statistics of a heralded single photon source based on cavity-enhanced spontaneous parametric down-conversion.

4.
Rev Sci Instrum ; 79(12): 123113, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-19123551

RESUMO

Time-correlated single photon counting continues to gain importance in a wide range of applications. Most prominently, it is used for time-resolved fluorescence measurements with sensitivity down to the single molecule level. While the primary goal of the method used to be the determination of fluorescence lifetimes upon optical excitation by short light pulses, recent modifications and refinements of instrumentation and methodology allow for the recovery of much more information from the detected photons, and enable entirely new applications. This is achieved most successfully by continuously recording individually detected photons with their arrival time and detection channel information (time tagging), thus avoiding premature data reduction and concomitant loss of information. An important property of the instrumentation used is the number of detection channels and the way they interrelate. Here we present a new instrument architecture that allows scalability in terms of the number of input channels while all channels are synchronized to picoseconds of relative timing and yet operate independent of each other. This is achieved by means of a modular design with independent crystal-locked time digitizers and a central processing unit for sorting and processing of the timing data. The modules communicate through high speed serial links supporting the full throughput rate of the time digitizers. Event processing is implemented in programmable logic, permitting classical histogramming, as well as time tagging of individual photons and their temporally ordered streaming to the host computer. Based on the time-ordered event data, any algorithms and methods for the analysis of fluorescence dynamics can be implemented not only in postprocessing but also in real time. Results from recently emerging single molecule applications are presented to demonstrate the capabilities of the instrument.


Assuntos
Fótons , Algoritmos , Interpretação Estatística de Dados , Desenho de Equipamento , Transferência Ressonante de Energia de Fluorescência , Processamento de Imagem Assistida por Computador , Microscopia Confocal/métodos , Óptica e Fotônica , Processamento de Sinais Assistido por Computador/instrumentação , Espectrometria de Fluorescência/métodos , Fatores de Tempo
5.
Rev Sci Instrum ; 78(3): 033106, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17411177

RESUMO

Time-correlated single photon counting is a powerful method for sensitive time-resolved fluorescence measurements down to the single molecule level. The method is based on the precisely timed registration of single photons of a fluorescence signal. Historically, its primary goal was the determination of fluorescence lifetimes upon optical excitation by a short light pulse. This goal is still important today and therefore has a strong influence on instrument design. However, modifications and extensions of the early designs allow for the recovery of much more information from the detected photons and enable entirely new applications. Here, we present a new instrument that captures single photon events on multiple synchronized channels with picosecond resolution and over virtually unlimited time spans. This is achieved by means of crystal-locked time digitizers with high resolution and very short dead time. Subsequent event processing in programmable logic permits classical histogramming as well as time tagging of individual photons and their streaming to the host computer. Through the latter, any algorithms and methods for the analysis of fluorescence dynamics can be implemented either in real time or offline. Instrument test results from single molecule applications will be presented.


Assuntos
Fótons , Radiometria/instrumentação , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...