Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Microbiol ; 134(1)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36626729

RESUMO

AIMS: This study aimed to identify endophytic fungi from Anthemis altissima, Matricaria parthenium, Cichorium intybus, Achillea millefolium, and A. filipendulina with plant-promoting ability on the ZP684 maize hybrid-cultivar. METHODS AND RESULTS: Plants were collected from northeast-Iran and endophytic fungi were isolated and identified using partial large subunit nrDNA, internal transcribed spacer, translation elongation factor, and ß-tubulin genetic markers. Endophytic fungi that improved seed germination were studied under greenhouse conditions. Ninety-seven endophytic fungi were identified. Preussia africana, Bjerkandera adusta, Schizophyllum commune, Alternaria embellisia, Trichaptum biforme, Septoria malagutii, A. consortiale, Verticillium dahliae, Fusarium avenacearum, and Trametes versicolor significantly improved seed-germination. Alternaria consortiale produced the highest level of indole-3-acetic acid-like compounds and maize growth-promoting. CONCLUSIONS: Plant fungal colonization frequency increased with orthometric height. Sampling location Chahar Bagh at 2230 m contained the most endophytic fungi. Fusarium and Alternaria were the most frequently isolated endophytic genera. Therefore, medicinal plants are potential hosts for endophytic fungi that may be suitable biofertilizer agents in agriculture. SIGNIFICANCE AND IMPACT OF THE STUDY: This study helps to better understand the ecosystem functions by investigating of endophytic fungi distribution under different ecological conditions. Finding effective isolates among these microorganisms with a suitable plant-promoting ability on crops may help to reduce the use of chemical fertilizers in an agroecosystem.


Assuntos
Fusarium , Plantas Medicinais , Zea mays/microbiologia , Plantas Medicinais/microbiologia , Ecossistema , Trametes , Endófitos , Fungos
2.
Iran J Biotechnol ; 19(2): e2762, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34435061

RESUMO

BACKGROUND: Septoria tritici blotch (STB) caused by fungus Zymoseptoria tritici, is one of the important wheat (Triticum aestivum L.) diseases difficult to control because of the lack of wheat resistant cultivars. The use of biological control agents is one possible way for triggering host plant resistance to biotic and abiotic stresses. OBJECTIVE: In this study, we examined the ability of Serendipita indica and Pseudomonas protegens CHA0-mCherry in inducing the local wheat cultivar Tajan resistance to STB. MATERIALS AND METHODS: The interaction between biological control agents and the roots of wheat was evaluated. The experiment was conducted in a completely randomized design by three replicates. Spore suspension was supplied at concentrations of 107 and 109 for S. indica and bacteria isolate (CHA0-mCherry) respectively. Five treatments were applied including S. indica, CHA0-mCherry, S. indica and CHA0-mCherry co-inoculation, positive and negative control. Twenty-one days after inoculation, the interaction between biological agents and plant roots were evaluated through morphological traits and qPCR. The plant resistance, disease severity, and the correlation between resistance and disease severity were assessed. Pycnidial variation and agronomic traits were also evaluated. RESULTS: Twenty-one days after inoculation, both biological agents clearly colonized all treated roots of all treatments except in control plants as demonstrated by qPCR analysis. Chlamydospores were observed in the S. indica-treated hosts with the CHA0-mCherry colonizing assessment showing 5×109 CFU g-1 in the root. The asexual phase of the fungal pathogen, pycnidial diameter, was reduced in S. indica treated plants more considerably than in the other treatments. There was a positive correlation between resistance and disease severity mean when calculated by Pearson's correlation. There was a significant difference between the root length, fresh, and dry weight of root. Spore density was inversely correlated to resistance and disease severity, when compared with control, with CHA0-mCherry being the most effective in reducing the spore density. S. indica was the most effective in promoting root growth and stem biomass, when compared with control. CONCLUSIONS: Serendipita indica and Pseudomonas protegens CHA0-mCherry colonies showed a potential biological control activity and efficiently enhanced the plant resistance to Z. tritici in the treated wheat roots. The microbial biological control agents are very practical in crop protection against plant disease and can be very useful in sustainable agriculture. ABBREVIATIONS: PLSN: percentage of leave surface necrosis, DPI: day past inoculation, PLACL: percentage of leaf area covered by lesions, PPMLA: pycnidia per millimeter in leaf area.

3.
J Basic Microbiol ; 60(9): 746-757, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32515020

RESUMO

Two strains of 64 endophytic bacteria, Bacillus cereus Si-Ps1 and Pseudomonas azotoformans La-Pot3-3, isolated from Citrus sinensis and C. sinensis var. Thomson's leaves, respectively, reduced N-acyl homoserine-based quorum sensing in bioindicator strain Pseudomonas syringae pv. syringae (Pss) B728a and the biofilm production and swarming motility of field isolate Pss 3289. A homolog of aiiA gene encoding an AHL-lactonase was found in B. cereus (Si-Ps1), suggesting that this isolate can degrade the quorum-sensing signal molecules of Pss 3289. The crude extract of endophytic bacterium, B. cereus (Si-Ps1), inhibited Pss 3289 biofilm formation after 48 and 96 h by 55% and 58%, respectively. Similar reductions in biofilm formation were conferred by crude extracts of P. azotoformans (La-Pot3-3). Correspondingly, the number of planktonic cells in cultures treated with these extracts was higher than in control cultures, indicating a direct effect on biofilm formation and not on cell growth. In greenhouse assays, the virulence of Pss 3289 to different citrus cultivars was decreased when coinoculated with these endophytic bacteria.


Assuntos
Citrus/microbiologia , Endófitos/fisiologia , Doenças das Plantas/prevenção & controle , Pseudomonas syringae/patogenicidade , Percepção de Quorum , Amidoidrolases/genética , Bacillus cereus/genética , Bacillus cereus/isolamento & purificação , Bacillus cereus/metabolismo , Bacillus cereus/fisiologia , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Hidrolases de Éster Carboxílico/genética , Endófitos/genética , Endófitos/isolamento & purificação , Endófitos/metabolismo , Locomoção , Doenças das Plantas/microbiologia , Folhas de Planta/microbiologia , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , Pseudomonas/fisiologia , Virulência
4.
PeerJ ; 8: e8309, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31976175

RESUMO

L-asparaginase is an important anticancer enzyme that is used in the first line treatment of acute lymphoblastic leukemia. This study was conducted to isolate L-asparaginase-producing endophytic fungi from medicinal plants of family Asteraceae. Seven healthy medicinal plants from family Asteraceae were selected for the isolation of endophytic fungi using standard surface sterilization techniques. A total of 837 isolates belonging to 84 species were comprised of the stem (55.6%), leaf (31.1%), root (10.6%) and flower (2.7%). Initial screening of L-asparaginase-producing endophytes was performed by qualitative plate assay on modified Czapex dox's agar medium. L-asparaginase activity of fungal endophytes was quantified by the nesslerization method. Identification of endophytic fungi was performed using both morphological characteristics and phylogenetic analyses of DNA sequence data including ribosomal DNA regions of ITS (Internal transcribed spacer) and LSU (partial large subunit rDNA), TEF1 (Translation Elongation Factor) and TUB (ß-tubulin). Of the 84 isolates, 38 were able to produce L-asparaginase and their L-asparaginase activities were between 0.019 and 0.492 unit/mL with Fusarium proliferatum being the most potent. L-asparaginase-producing endophytes were identified as species of Plectosphaerella, Fusarium, Stemphylium, Septoria, Alternaria, Didymella, Phoma, Chaetosphaeronema, Sarocladium, Nemania, Epicoccum, Ulocladium and Cladosporium. This study showed that endophytic fungi from Asteraceae members have a high L-asparaginase-producing potential and they can be used as an alternative source for production of anticancer enzymes.

5.
Iran J Basic Med Sci ; 23(12): 1565-1570, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33489030

RESUMO

OBJECTIVES: Ferula ovina is an Iranian medicinal plant. Tschimgine and stylosin are two of its major monoterpene derivatives. In this study, we proceeded to investigate some fungal endophytes from F. ovina that can produce plant secondary metabolites. MATERIALS AND METHODS: The isolated endophytic fungi were fermented in potato dextrose broth (PDB) medium and their extracts were screened for the presence of the plant compounds by liquid chromatography-tandem mass spectrometry (LC-MS). Endophytes identification was performed by morphological and molecular methods. Three markers (ITS, LSU, and TEF1) were used for accurate molecular identification. RESULTS: Forty isolates from 9 different genera of endophytic fungi were identified, of which two recently reported species of O. ferulica and Pithoascus persicus were able to produce tschimgine and stylosin. CONCLUSION: These fungi can be used as a substitute for the production of plant's medicinal compounds independent of wild populations of the source plant.

6.
Bioresour Technol ; 102(5): 4165-70, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21232938

RESUMO

Poplar chips were pre-treated by Trametes versicolor for 1, 2 and 3 weeks. Pre-treated chips, after washing, have been air dried for kraft pulping to achieve pulp kappa number of about 20. Pulp samples have been analyzed by Bauer Mc Nett, Kajaani analyzer and SEM. The results indicated that fungi pre-treatment of chips can degrade lignin and carbohydrates and affect kraft pulping and fiber characteristics. Higher chemical charge in pulping, lower fine and higher long fiber fraction were observed in pre-treated pulp samples in comparison with others. Fiber length, cross sectional area, width, cell wall thickness and volume index were increased by increasing pre-treatment time while fine length, fiber coarseness and curl have been reduced. Based on the study findings, with respect to higher fiber length, lower fine, and lower fiber curl and coarseness, 2-weeks pre-treatment of chips was recommended to produce acceptable overall fiber properties in kraft pulping.


Assuntos
Lignina/metabolismo , Papel , Populus/metabolismo , Trametes/metabolismo , Madeira/metabolismo , Análise de Variância , Irã (Geográfico) , Microscopia Eletrônica de Varredura , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...