Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(4)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35207943

RESUMO

It is very important to keep structures and constructional elements in service during and after exposure to elevated temperatures. Investigation of the structural behaviour of different components and structures at elevated temperatures is an approach to manipulate the serviceability of the structures during heat exposure. Channel connectors are widely used shear connectors not only for their appealing mechanical properties but also for their workability and cost-effective nature. In this study, a finite element (FE) evaluation was performed on an authentic composite model, and the behaviour of the channel shear connector at elevated temperature was examined. Furthermore, a novel hybrid intelligence algorithm based on a feature-selection trait with the incorporation of particle swarm optimization (PSO) and multi-layer perceptron (MLP) algorithms has been developed to predict the slip response of the channel. The hybrid intelligence algorithm that uses artificial neural networks is performed on derived data from the FE study. Finally, the obtained numerical results are compared with extreme learning machine (ELM) and radial basis function (RBF) results. The MLP-PSO represented dramatically accurate results for slip value prediction at elevated temperatures. The results proved the active presence of the channels, especially to improve the stiffness and loading capacity of the composite beam. Although the height enhances the ductility, stiffness is significantly reduced at elevated temperatures. According to the results, temperature, failure load, the height of connector and concrete block strength are the key governing parameters for composite floor design against high temperatures.

2.
Sensors (Basel) ; 21(24)2021 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-34960401

RESUMO

Sensing technologies demonstrate promising potential in providing the construction industry with a safe, productive, and high-quality process. The majority of sensing technologies in the construction research area have been focused on construction automation research in prefabrication, on-site operation, and logistics. However, most of these technologies are either not implemented in real construction projects or are at the very early stages in practice. The corresponding applications are far behind, even in extensively researched aspects such as Radio Frequency Identification, ultra-wideband technology, and Fiber Optic Sensing technology. This review systematically investigates the current status of sensing technologies in construction from 187 articles and explores the reasons responsible for their slow adoption from 69 articles. First, this paper identifies common sensing technologies and investigates their implementation extent. Second, contributions and limitations of sensing technologies are elaborated to understand the current status. Third, key factors influencing the adoption of sensing technologies are extracted from construction stakeholders' experience. Demand towards sensing technologies, benefits and suitability of them, and barriers to their adoption are reviewed. Lastly, the governance framework is determined as the research tendency facilitating sensing technologies adoption. This paper provides a theoretical basis for the governance framework development. It will promote the sensing technologies adoption and improve construction performance including safety, productivity, and quality.


Assuntos
Indústria da Construção , Dispositivo de Identificação por Radiofrequência , Automação
3.
Sensors (Basel) ; 22(1)2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-35009799

RESUMO

Sensing technologies present great improvements in construction performance including the safety, productivity, and quality. However, the corresponding applications in real projects are far behind compared with the academically research. This research aims to discover dominate influence factors in the sensing technologies adoption and ultimately develop a governance framework facilitating adoption processes. The framework is dedicated on general sensing technologies rather than single sensor in previous framework studies. To begin with, the influence factors of sensing technologies and other similar emerging technologies are summarised through a review. Then, a mixed methods design was employed to collect quantitative data through an online survey, and qualitative data through semi-structured interviews. Findings of the quantitative method reveal that the most widely implemented sensing technologies are GPS and visual sensing technology, but they're still not adopted by all construction companies. Partial Least Squares Structural Equation Modelling reveals that supplier characteristics have the highest effect in all influence factors. Qualitative method was adopted to investigate perceptions of construction stakeholders on the major decision-making considerations in the adoption process. Ultimately, a triangulation analysis of findings from the literature review, online survey and interviews resulted in the governance framework development. The overarching contribution of this research focus on the general adoption of sensing technologies rather than the adoption of a specific sensor. Therefore, the governance framework can assist with the decision-making process of any sensing technology adoption in construction.


Assuntos
Projetos de Pesquisa , Tecnologia , Inquéritos e Questionários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...