Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 14: 1157151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37152750

RESUMO

The west coast of the Arabian Peninsula borders the Red Sea, a water body which maintains high average temperatures and increased salinity compared to other seas or oceans. This geography has many resources which could be used to support algal biotechnology efforts in bio-resource circularity. However, summer conditions in this region may exceed the temperature tolerance of most currently cultivated microalgae. The Cyanidiophyceae are a class of polyextremophilic red algae that natively inhabit acidic hot springs. C. merolae 10D has recently emerged as an interesting model organism capable of high-cell density cultivation on pure CO2 with optimal growth at elevated temperatures and acidic pH. C. merolae biomass has an interesting macromolecular composition, is protein rich, and contains valuable bio-products like heat-stable phycocyanin, carotenoids, ß-glucan, and starch. Here, photobioreactors were used to model C. merolae 10D growth performance in simulated environmental conditions of the mid-Red Sea coast across four seasons, it was then grown at various scales outdoors in Thuwal, Saudi Arabia during the Summer of 2022. We show that C. merolae 10D is amenable to cultivation with industrial-grade nutrient and CO2 inputs outdoors in this location and that its biomass is relatively constant in biochemical composition across culture conditions. We also show the adaptation of C. merolae 10D to high salinity levels of those found in Red Sea waters and conducted further modeled cultivations in nutrient enriched local sea water. It was determined that salt-water adapted C. merolae 10D could be cultivated with reduced nutrient inputs in local conditions. The results presented here indicate this may be a promising alternative species for algal bioprocesses in outdoor conditions in extreme coastal desert summer environments.

2.
Crit Rev Biotechnol ; 42(1): 46-72, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33980092

RESUMO

The application of microbial co-cultures is now recognized in the fields of biotechnology, ecology, and medicine. Understanding the biological interactions that govern the association of microorganisms would shape the way in which artificial/synthetic co-cultures or consortia are developed. The ability to accurately predict and control cell-to-cell interactions fully would be a significant enabler in synthetic biology. Co-culturing method development holds the key to strategically engineer environments in which the co-cultured microorganism can be monitored. Various approaches have been employed which aim to emulate the natural environment and gain access to the untapped natural resources emerging from cross-talk between partners. Amongst these methods are the use of a communal liquid medium for growth, use of a solid-liquid interface, membrane separation, spatial separation, and use of microfluidics systems. Maximizing the information content of interactions monitored is one of the major challenges that needs to be addressed by these designs. This review critically evaluates the significance and drawbacks of the co-culturing approaches used to this day in biotechnological applications, relevant to biomanufacturing. It is recommended that experimental results for a co-cultured species should be validated with different co-culture approaches due to variations in interactions that could exist as a result of the culturing method selected.


Assuntos
Consórcios Microbianos , Biologia Sintética , Biotecnologia , Técnicas de Cocultura , Microfluídica
3.
iScience ; 24(7): 102743, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34278255

RESUMO

Large-scale algal oil production requires continuous outputs and a trade-off between growth and oil content. Two unrelated marine algae (Nannochloropsis oceanica [CCAP 849/10] and Chlorella vulgaris [CCAP 211/21A]) that showed high oil production under batch culture were studied under controlled semicontinuous cultivation conditions. Three essential attributes maximized oil productivity: (i) downregulation of cell size to maximize light absorption under N limitation; (ii) low nutrient-depletion thresholds to trigger oil induction; (iii) a means of carbohydrate suppression in favor of oil. N. oceanica responded better to input N/P variations and is more suited to continuous oil production. A low N/P ratio was effective in both suppressing carbohydrate and reducing cell size concomitant with oil production. In C. vulgaris, nutrient starvation thresholds for oil were higher and carbohydrate was preferentially induced, which impeded stress-level optimization for oil. These differences, which impact continuous oil production at scale, are driven by species adaptation to specific marine habitats.

4.
Biotechnol Adv ; 49: 107754, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33892124

RESUMO

For the growing human population to be sustained during present climatic changes, enhanced quality and quantity of crops are essential to enable food security worldwide. The current consensus is that we need to make a transition from a petroleum-based to a bio-based economy via the development of a sustainable circular economy and biorefinery approaches. Both macroalgae (seaweeds) and microalgae have been long considered a rich source of plant biostimulants with an attractive business opportunity in agronomy and agro-industries. To date, macroalgae biostimulants have been well explored. In contrast, microalgal biostimulants whilst known to have positive effects on development, growth and yields of crops, their commercial implementation is constrained by lack of research and cost of production. The present review highlights the current knowledge on potential biostimulatory compounds, key sources and their quantitative information from algae. Specifically, we provide an overview on the prospects of microalgal biostimulants to advance crop production and quality. Key aspects such as specific biostimulant effects caused by extracts of microalgae, feasibility and potential of co-cultures and later co-application with other biostimulants/biofertilizers are highlighted. An overview of the current knowledge, recent advances and achievements on extraction techniques, application type, application timing, current market and regulatory aspects are also discussed. Moreover, aspects involved in circular economy and biorefinery approaches are also covered, such as: integration of waste resources and implementation of high-throughput phenotyping and -omics tools in isolating novel strains, exploring synergistic interactions and illustrating the underlying mode of microalgal biostimulant action. Overall, this review highlights the current and future potential of microalgal biostimulants, algal biochemical components behind these traits and finally bottlenecks and prospects involved in the successful commercialisation of microalgal biostimulants for sustainable agricultural practices.


Assuntos
Microalgas , Alga Marinha , Agricultura , Produtos Agrícolas , Humanos
6.
Appl Microbiol Biotechnol ; 104(23): 10293-10305, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33025127

RESUMO

The commercial reality of microalgal biotechnology for the production of individual bioactives is constrained by the high cost of production and requires a biorefinery approach. In this investigation, we examined the influence of different nutrient deprivation (nitrogen (N), phosphorus (P), sulphur (S) and manganese (Mn)) on growth, chlorophyll a (Chl a), biohydrogen (H2) and fatty acid profiles in Parachlorella kessleri EMCCN 3073 under both aerobic and anaerobic conditions. Anaerobic conditions combined with the nutrient deprivation resulted in cell division blockage, reduction in Chl a and remarkable changes in pH, whereas a significant increase in the H2 production was observed after 24 h. The highest cumulative H2 productivity was observed in N-deficient medium (300 µL/L, day 9) followed by Mn-deficient medium (250 µL/L, day 7). The highest H2 production rate (3.37 µL/L/h) was achieved by Mn-deficient medium after 24 h. In terms of fatty acid composition, P. kessleri exhibited a differential response to different nutrient stresses. Under aerobic conditions, N-deficient media resulted in the highest lipid content (119% compared to control, day 7), whereas earlier lipid induction at (1-3 days) was observed with Mn- and S-deficient media with 18-91% and 25-34% increase, respectively, compared with the replete control. Meanwhile, higher lipid content was observed under anaerobic conditions combined with Mn-, N-, P- and S-deprived media (day 1) with 20%, 13%, 8% and 7% increases respectively compared with the control. This investigation, for the first time clearly, highlights the potential of P. kessleri as a sustainable biorefinery platform, for H2 and fatty acid bio-production under anaerobic conditions. KEY POINTS: • Parachlorella kessleri could provide a future sustainable biorefinery platform. • Nutrient-deprived anaerobic conditions blocked cell growth but differentially induced H2 production. • Nutrient status, under both aerobic/anaerobic conditions, alters lipids and fatty acids profile of P. kessleri. • Nutrient-deprived (N- and Mn-) anaerobic conditions: future biorefinery platform.


Assuntos
Clorófitas , Microalgas , Biocombustíveis , Biomassa , Clorofila A , Lipídeos , Nutrientes
7.
Front Microbiol ; 11: 792, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32457714

RESUMO

Microalgae can respond to natural cues from crustacean grazers, such as Daphnia, by forming colonies and aggregations called flocs. Combining microalgal biology, physiological ecology, and quantitative proteomics, we identified how infochemicals from Daphnia trigger physiological and cellular level changes in the microalga Scenedesmus subspicatus, underpinning colony formation and flocculation. We discovered that flocculation occurs at an energy-demanding 'alarm' phase, with an important role proposed in cysteine synthesis. Flocculation appeared to be initially stimulated by the production of an extracellular matrix where polysaccharides and fatty acids were present, and later sustained at an 'acclimation' stage through mitogen-activated protein kinase (MAPK) signaling cascades. Colony formation required investment into fatty acid metabolism, likely linked to separation of membranes during cell division. Higher energy demands were required at the alarm phase, which subsequently decreased at the acclimation stage, thus suggesting a trade-off between colony formation and flocculation. From an ecological and evolutionary perspective, our findings represent an improved understanding of the effect of infochemicals on microalgae-grazers interactions, and how they can therefore potentially impact on the structure of aquatic communities. Moreover, the mechanisms revealed are of interest in algal biotechnology, for exploitation in low-cost, sustainable microalgal biomass harvesting.

8.
Trends Biotechnol ; 38(6): 606-622, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31980300

RESUMO

A switch from a petroleum-based to a biobased economy requires the capacity to produce both high-value low-volume and low-value high-volume products. Recent evidence supports the development of microalgae-based microbial cell factories with the objective of establishing environmentally sustainable manufacturing solutions. Diatoms display rich diversity and potential in this regard. We focus on Phaeodactylum tricornutum, a pennate diatom that is commonly found in marine ecosystems, and discuss recent trends in developing the diatom chassis for the production of a suite of natural and genetically engineered products. Both upstream and downstream developments are reviewed for the commercial development of P. tricornutum as a cell factory for a spectrum of marketable products.


Assuntos
Reatores Biológicos , Diatomáceas/genética , Engenharia Genética , Microalgas/genética , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Diatomáceas/metabolismo , Ecossistema , Humanos , Microalgas/metabolismo
9.
Indian J Dent Res ; 31(6): 835-839, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33753650

RESUMO

AIMS: To evaluate the association of oral health literacy (OHL) with oral health behavior and oral health outcomes among dental patients in Hyderabad City. SETTINGS AND DESIGN: Cross-sectional study among dental patients. MATERIALS AND METHODS: A convenience sample of 605 adults >18 years of age visiting the out-patient Department of Public Health Dentistry of Government Dental College and Hospital, Hyderabad, were recruited. The five-item scale developed by Ishikawa was used to measure communication and critical OHL. Socioeconomic status was assessed using Modified Kuppuswamy's scale and questions for oral health behavior included frequency of toothbrushing, frequency of dental visit, and reason for visit. Dentition status, periodontal status, and loss of attachment were recorded according to World Health Organisation Survey methods. STATISTICAL ANALYSIS USED: Frequency distribution was done and association between the variables and predictors (oral health behavior and oral health status) of OHL was calculated using odds ratio. RESULTS: The mean age of the study population was 31.5 + 11.2 years. None of the individuals' questions of OHL questionnaire had 50% response of strongly agree or agree. The oral health parameters of decayed and filled teeth emerged as a significant predictor for model 1 (adjusted by sex and age) and model 2 (adjusted by sex, age, and social class). Likewise, toothbrushing frequency was significantly associated with low OHL. CONCLUSIONS: This study shows a high prevalence of low OHL in the study population, with decayed teeth and filled teeth and oral health behavior like toothbrushing only once as a significant predictor for low OHL.


Assuntos
Cárie Dentária , Letramento em Saúde , Adulto , Estudos Transversais , Comportamentos Relacionados com a Saúde , Humanos , Saúde Bucal , Avaliação de Resultados em Cuidados de Saúde , Adulto Jovem
10.
Sci Rep ; 9(1): 2093, 2019 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30765863

RESUMO

As algal biotechnology develops, there is an increasing requirement to conserve cultures without the cost, time and genetic stability implications of conventional serial transfers, including issues regarding potential loss by failure to regrow, contamination on transfer, mix up and/or errors in the documentation on transfer. Furthermore, it is crucial to ensure both viability and functionality are retained by stored stock-cultures. Low temperature storage, ranging from the use of domestic freezers to storage under liquid nitrogen, is widely being used, but the implication to stability and function rarely investigated. We report for the first time, retention of functionality in the maintenance of master stock-cultures of an industrially relevant, lipid-producing alga, under a variety of cryopreservation regimes. Storage in domestic (-15 °C), or conventional -80 °C freezers was suboptimal, with a rapid reduction in viability observed for samples at -15 °C and a >50% loss of viability, within one month, for samples stored at -80 °C. No reduction in viability occurred at -196 °C. Post-thaw culture functional performance was also influenced by the cryopreservation approach employed. Only samples held at -196 °C responded to nitrogen limitation in terms of growth characteristics and biochemical profiles (lipid production and chlorophyll a) comparable to the untreated control, cultured prior to cryopreservation. These results have important implications in microbial biotechnology, especially for those responsible for the conservation of genetic resources.


Assuntos
Chlorella vulgaris/crescimento & desenvolvimento , Criopreservação/métodos , Congelamento/efeitos adversos , Sobrevivência Celular/fisiologia , Chlorella vulgaris/metabolismo , Temperatura Baixa
11.
Metabolites ; 8(4)2018 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-30384421

RESUMO

Capturing a valid snapshot of the metabolome requires rapid quenching of enzyme activities. This is a crucial step in order to halt the constant flux of metabolism and high turnover rate of metabolites. Quenching with cold aqueous methanol is treated as a gold standard so far, however, reliability of metabolomics data obtained is in question due to potential problems connected to leakage of intracellular metabolites. Therefore, we investigated the influence of various parameters such as quenching solvents, methanol concentration, inclusion of buffer additives, quenching time and solvent to sample ratio on intracellular metabolite leakage from Chlamydomonas reinhardtii. We measured the recovery of twelve metabolite classes using gas chromatography mass spectrometry (GC-MS) in all possible fractions and established mass balance to trace the fate of metabolites during quenching treatments. Our data demonstrate significant loss of intracellular metabolites with the use of the conventional 60% methanol, and that an increase in methanol concentration or quenching time also resulted in higher leakage. Inclusion of various buffer additives showed 70 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid) to be suitable. In summary, we recommend quenching with 60% aqueous methanol supplemented with 70 mM HEPES (-40 °C) at 1:1 sample to quenching solvent ratio, as it resulted in higher recoveries for intracellular metabolites with subsequent reduction in the metabolite leakage for all metabolite classes.

12.
Metabolites ; 8(4)2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-30326577

RESUMO

Currently, the energy required to produce biofuel from algae is 1.38 times the energy available from the fuel. Current methods do not deliver scalable, commercially viable cell wall disruption, which creates a bottleneck on downstream processing. This is primarily due to the methods depositing energy within the water as opposed to within the algae. This study investigates ultraviolet B (UVB) as a disruption method for the green algae Chlamydomonas reinhardtii, Dunaliella salina and Micractinium inermum to enhance solvent lipid extraction. After 232 seconds of UVB exposure at 1.5 W/cm², cultures of C. reinhardtii (culture density 0.7 mg/mL) showed 90% disruption, measured using cell counting, correlating to an energy consumption of 5.6 MJ/L algae. Small-scale laboratory tests on C. reinhardtii showed bead beating achieving 45.3 mg/L fatty acid methyl esters (FAME) and UV irradiation achieving 79.9 mg/L (lipids solvent extracted and converted to FAME for measurement). The alga M. inermum required a larger dosage of UVB due to its thicker cell wall, achieving a FAME yield of 226 mg/L, compared with 208 mg/L for bead beating. This indicates that UV disruption had a higher efficiency when used for solvent lipid extraction. This study serves as a proof of concept for UV irradiation as a method for algal cell disruption.

13.
Biotechnol Biofuels ; 11: 60, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29541157

RESUMO

BACKGROUND: Microalgae accumulate lipids when exposed to stressful conditions such as nutrient limitation that can be used to generate biofuels. Nitrogen limitation or deprivation is a strategy widely employed to elicit this response. However, this strategy is associated with a reduction in the microalgal growth, leading to overall poor lipid productivities. Here, we investigated the combined effect of a reduced source of nitrogen (ammonium) and super-saturating light intensities on the growth and induction of lipid accumulation in two model but diverse microalgal species, Phaeodactylum tricornutum and Nannochloropsis oceanica. We hypothesized that the lower energy cost of assimilating ammonium would allow the organisms to use more reductant power for lipid biosynthesis without compromising growth and that this would be further stimulated by the effect of high light (1000 µmol m-2 s-1) stress. We studied the changes in growth and physiology of both species when grown in culture media that either contained nitrate or ammonium as the nitrogen source, and an additional medium that contained ammonium with tungsten in place of molybdenum and compared this with growth in media without nitrogen. We focused our investigation on the early stages of exposure to the treatments to correspond to events relevant to induction of lipid accumulation in these two species. RESULTS: At super-saturating light intensities, lipid productivity in P. tricornutum increased twofold when grown in ammonium compared to nitrogen free medium that increased further when tungsten was present in the medium in place of molybdenum. Conversely, N. oceanica growth and physiology was not compromised by the high light intensities used, and the use of ammonium had a negative effect on the lipid productivity, which was even more marked when tungsten was present. CONCLUSIONS: Whilst the use of ammonium and super-saturating light intensities in P. tricornutum was revealed to be a good strategy for increasing lipid biosynthesis, no changes in the lipid productivity of N. oceanica were observed, under these conditions. Both results provide relevant direction for the better design of processes to produce biofuels in microalgae by manipulating growth conditions without the need to subject them to genetic engineering manipulation.

14.
Biology (Basel) ; 7(1)2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29462888

RESUMO

The commercial reality of bioactive compounds and oil production from microalgal species is constrained by the high cost of production. Downstream processing, which includes harvesting and extraction, can account for 70-80% of the total cost of production. Consequently, from an economic perspective extraction technologies need to be improved. Microalgal cells are difficult to disrupt due to polymers within their cell wall such as algaenan and sporopollenin. Consequently, solvents and disruption devices are required to obtain products of interest from within the cells. Conventional techniques used for cell disruption and extraction are expensive and are often hindered by low efficiencies. Microwave-assisted extraction offers a possibility for extraction of biochemical components including lipids, pigments, carbohydrates, vitamins and proteins, individually and as part of a biorefinery. Microwave technology has advanced since its use in the 1970s. It can cut down working times and result in higher yields and purity of products. In this review, the ability and challenges in using microwave technology are discussed for the extraction of bioactive products individually and as part of a biorefinery approach.

15.
Crit Rev Biotechnol ; 38(5): 690-703, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29233009

RESUMO

Monocultures have been the preferred production route in the bio-industry, where contamination has been a major bottleneck. In nature, microorganisms usually exist as part of organized communities and consortia, gaining benefits from co-habitation, keeping invaders at bay. There is increasing interest in the use of co-cultures to tackle contamination issues, and simultaneously increase productivity and product diversity. The feasibility of extending the natural phenomenon of co-habitation to the biomanufacturing industry in the form of co-cultures requires careful and systematic consideration of several aspects. This article will critically examine and review current work on microbial co-cultures, with the intent of examining the concept and proposing a design pipeline that can be developed in a biomanufacturing context.


Assuntos
Biotecnologia , Técnicas de Cocultura , Microalgas , Consórcios Microbianos , Bioengenharia
16.
Analyst ; 142(11): 2038-2049, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28497155

RESUMO

Metabolome characterisation is a powerful tool in oncology. To obtain a valid description of the intracellular metabolome, two of the preparatory steps are crucial, namely washing and quenching. Washing must effectively remove the extracellular media components and quenching should stop the metabolic activities within the cell, without altering the membrane integrity of the cell. Therefore, it is important to evaluate the efficiency of the washing and quenching solvents. In this study, we employed two previously optimised protocols for simultaneous quenching and extraction, and investigated the effects of a number of washing steps/solvents and quenching solvent additives, on metabolite leakage from the adherent metastatic breast cancer cell line MDA-MB-231. We explored five washing protocols and five quenching protocols (including a control for each), and assessed for effectiveness by detecting ATP in the medium and cell morphology changes through scanning electron microscopy (SEM) analyses. Furthermore, we studied the overall recovery of eleven different metabolite classes using the GC-MS technique and compared the results with those obtained from the ATP assay and SEM analysis. Our data demonstrate that a single washing step with PBS and quenching with 60% methanol supplemented with 70 mM HEPES (-50 °C) results in minimum leakage of intracellular metabolites. Little or no interference of PBS (used in washing) and methanol/HEPES (used in quenching) on the subsequent GC-MS analysis step was noted. Together, these findings provide for the first time a systematic study into the washing and quenching steps of the metabolomics workflow for studying adherent mammalian cells, which we believe will improve reliability in the application of metabolomics technology to study adherent mammalian cell metabolism.


Assuntos
Neoplasias da Mama/metabolismo , Metaboloma , Metabolômica/métodos , Linhagem Celular Tumoral , Humanos , Reprodutibilidade dos Testes
17.
Philos Trans A Math Phys Eng Sci ; 374(2079)2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27644979

RESUMO

Metabolome analyses are a suite of analytical approaches that enable us to capture changes in the metabolome (small molecular weight components, typically less than 1500 Da) in biological systems. Mass spectrometry (MS) has been widely used for this purpose. The key challenge here is to be able to capture changes in a reproducible and reliant manner that is representative of the events that take place in vivo Typically, the analysis is carried out in vitro, by isolating the system and extracting the metabolome. MS-based approaches enable us to capture metabolomic changes with high sensitivity and resolution. When developing the technique for different biological systems, there are similarities in challenges and differences that are specific to the system under investigation. Here, we review some of the challenges in capturing quantitative changes in the metabolome with MS based approaches, primarily in microbial and mammalian systems.This article is part of the themed issue 'Quantitative mass spectrometry'.


Assuntos
Espectrometria de Massas/métodos , Metabolômica/métodos , Microbiologia , Animais , Cromatografia Gasosa , Mamíferos/metabolismo
18.
Curr Biotechnol ; 5(4): 305-313, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28409092

RESUMO

BACKGROUND: Algal cells produce neutral lipid when stressed and this can be used to generate biodiesel. OBJECTIVE: Salt stressed cells of the model microalgal species Chlamydomonas reinhardtii were tested for their suitability to produce lipid for biodiesel. METHODS: The starchless mutant of C. reinhardtii (CC-4325) was subjected to salt stress (0.1, 0.2 and 0.3 M NaCl) and transesterification and GC analysis were used to determine fatty acid methyl ester (FAME) content and profile. RESULTS: Fatty acid profile was found to vary under salt stress conditions, with a clear distinction between 0.1 M NaCl, which the algae could tolerate, and the higher levels of NaCl (0.2 and 0.3 M), which caused cell death. Lipid content was increased under salt conditions, either through long-term exposure to 0.1 M NaCl, or short-term exposure to 0.2 and 0.3 M NaCl. Palmitic acid (C16:0) and linolenic acid (C18:3n3) were found to increase significantly at the higher salinities. CONCLUSION: Salt increase can act as a lipid trigger for C. reinhardtii.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...