Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 11(1): 1564, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33452276

RESUMO

Reduction of excess nutrient application and balanced fertilizer use are the key mitigation options in agriculture. We evaluated Nutrient Expert (NE) tool-based site-specific nutrient management (SSNM) in rice and wheat crops by establishing 1594 side-by-side comparison trials with farmers' fertilization practices (FFP) across the Indo-Gangetic Plains (IGP) of India. We found that NE-based fertilizer management can lower global warming potential (GWP) by about 2.5% in rice, and between 12 and 20% in wheat over FFP. More than 80% of the participating farmers increased their crop yield and farm income by applying the NE-based fertilizer recommendation. We also observed that increased crop yield and reduced fertilizer consumption and associated greenhouse gas (GHG) emissions by using NE was significantly influenced by the crop type, agro-ecology, soil properties and farmers' current level of fertilization. Adoption of NE-based fertilizer recommendation practice in all rice and wheat acreage in India would translate into 13.92 million tonnes (Mt) more rice and wheat production with 1.44 Mt less N fertilizer use, and a reduction in GHG of 5.34 Mt CO2e per year over farmers' current practice. Our study establishes the utility of NE to help implement SSNM in smallholder production systems for increasing crop yields and farmers' income while reducing GHG emissions.

2.
Carbon Manag ; 10(1): 37-50, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32256713

RESUMO

Carbon (C) mineralization of crop residues is an important process occurring in soil which is helpful in predicting CO2 emission to the atmosphere and nutrient availability to plants. A laboratory experiment was conducted in which C mineralization of residues of rice (Oryza sativa), wheat (Triticum aestivum), maize (Zea mays), mungbean (Vigna radiata) and their mixtures was applied to the soil surface or incorporated into an Alfisols from Northwest India. C mineralization was significantly affected by residue placement and type and their interactions. Rice residue had a higher decomposition rate (k = 0.121 and 0.076 day-1) than wheat (0.073 and 0.042 day-1) and maize residues (0.041 day-1) irrespective of placements. Higher decomposition rates of rice and wheat were observed when placed on soil surface than incorporated in the soils. Additive effects of the contribution of each residue type to C mineralization of the residue mixture were observed. When mungbean residue was added to the rice/wheat or maize/wheat mixture, decomposition of the residue mixture was enhanced. Crop residues with low N and high C/N ratio such as maize, wheat, rice and their mixtures can be applied on the soil surface for faster C and N mineralization, thereby helping to manage high volumes of residues under conservation agriculture-based practices in northwest India.

3.
Glob Chang Biol ; 20(1): 287-99, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23929733

RESUMO

Rapid, precise, and globally comparable methods for monitoring greenhouse gas (GHG) fluxes are required for accurate GHG inventories from different cropping systems and management practices. Manual gas sampling followed by gas chromatography (GC) is widely used for measuring GHG fluxes in agricultural fields, but is laborious and time-consuming. The photo-acoustic infrared gas monitoring system (PAS) with on-line gas sampling is an attractive option, although it has not been evaluated for measuring GHG fluxes in cereals in general and rice in particular. We compared N2 O, CO2 , and CH4 fluxes measured by GC and PAS from agricultural fields under the rice-wheat and maize-wheat systems during the wheat (winter), and maize/rice (monsoon) seasons in Haryana, India. All the PAS readings were corrected for baseline drifts over time and PAS-CH4 (PCH4 ) readings in flooded rice were corrected for water vapor interferences. The PCH4 readings in ambient air increased by 2.3 ppm for every 1000 mg cm(-3) increase in water vapor. The daily CO2 , N2 O, and CH4 fluxes measured by GC and PAS from the same chamber were not different in 93-98% of all the measurements made but the PAS exhibited greater precision for estimates of CO2 and N2 O fluxes in wheat and maize, and lower precision for CH4 flux in rice, than GC. The seasonal GC- and PAS-N2 O (PN2 O) fluxes in wheat and maize were not different but the PAS-CO2 (PCO2 ) flux in wheat was 14-39% higher than that of GC. In flooded rice, the seasonal PCH4 and PN2 O fluxes across N levels were higher than those of GC-CH4 and GC-N2 O fluxes by about 2- and 4fold, respectively. The PAS (i) proved to be a suitable alternative to GC for N2 O and CO2 flux measurements in wheat, and (ii) showed potential for obtaining accurate measurements of CH4 fluxes in flooded rice after making correction for changes in humidity.


Assuntos
Poluentes Atmosféricos/análise , Dióxido de Carbono/análise , Metano/análise , Óxido Nitroso/análise , Acústica , Cromatografia Gasosa/métodos , Monitoramento Ambiental/instrumentação , Monitoramento Ambiental/métodos , Oryza , Espectrofotometria Infravermelho/métodos , Triticum , Zea mays
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...