Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 52(16): 9695-9709, 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39082275

RESUMO

Inappropriate homology-directed repair (HDR) of telomeres results in catastrophic telomere loss and aberrant chromosome fusions, leading to genome instability. We have previously shown that the TRF2-RAP1 heterodimer protects telomeres from engaging in aberrant telomere HDR. Cells lacking the basic domain of TRF2 and functional RAP1 display HDR-mediated telomere clustering, resulting in the formation of ultrabright telomeres (UTs) and massive chromosome fusions. Using purified proteins, we uncover three distinct molecular pathways that the TRF2-RAP1 heterodimer utilizes to protect telomeres from engaging in aberrant HDR. We show mechanistically that TRF2-RAP1 inhibits RAD51-initiated telomeric D-loop formation. Both the TRF2 basic domain and RAP1-binding to TRF2 are required to block RAD51-mediated homology search. TRF2 recruits the BLM helicase to telomeres through its TRFH domain to promote BLM-mediated unwinding of telomere D-loops. In addition, TRF2-RAP1 inhibits BLM-DNA2-mediated 5' telomere end resection, preventing the generation of 3' single-stranded telomere overhangs necessary for RAD51-dependent HDR. Importantly, cells expressing BLM mutants unable to interact with TRF2 accumulate telomere D-loops and UTs. Our findings uncover distinct molecular mechanisms coordinated by TRF2-RAP1 to protect telomeres from engaging in aberrant HDR.


Assuntos
Rad51 Recombinase , RecQ Helicases , Reparo de DNA por Recombinação , Complexo Shelterina , Proteínas de Ligação a Telômeros , Telômero , Proteína 2 de Ligação a Repetições Teloméricas , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Rad51 Recombinase/metabolismo , RecQ Helicases/metabolismo , RecQ Helicases/genética , Telômero/metabolismo , Complexo Shelterina/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteínas de Ligação a Telômeros/genética , Humanos , Ligação Proteica , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética
2.
Bioessays ; 46(2): e2300184, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38047499

RESUMO

Mammalian telomeres have evolved safeguards to prevent their recognition as DNA double-stranded breaks by suppressing the activation of various DNA sensing and repair proteins. We have shown that the telomere-binding proteins TRF2 and RAP1 cooperate to prevent telomeres from undergoing aberrant homology-directed recombination by mediating t-loop protection. Our recent findings also suggest that mammalian telomere-binding proteins interact with the nuclear envelope to maintain chromosome stability. RAP1 interacts with nuclear lamins through KU70/KU80, and disruption of RAP1 and TRF2 function result in nuclear envelope rupture, promoting telomere-telomere recombination to form structures termed ultrabright telomeres. In this review, we discuss the importance of the interactions between shelterin components and the nuclear envelope to maintain telomere homeostasis and genome stability.


Assuntos
Membrana Nuclear , Telômero , Animais , Humanos , Membrana Nuclear/metabolismo , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , DNA/metabolismo , Instabilidade Genômica , Mamíferos/genética
4.
Nat Commun ; 14(1): 2144, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-37059728

RESUMO

Double-strand breaks (DSBs) due to genotoxic stress represent potential threats to genome stability. Dysfunctional telomeres are recognized as DSBs and are repaired by distinct DNA repair mechanisms. RAP1 and TRF2 are telomere binding proteins essential to protect telomeres from engaging in homology directed repair (HDR), but how this occurs remains unclear. In this study, we examined how the basic domain of TRF2 (TRF2B) and RAP1 cooperate to repress HDR at telomeres. Telomeres lacking TRF2B and RAP1 cluster into structures termed ultrabright telomeres (UTs). HDR factors localize to UTs, and UT formation is abolished by RNaseH1, DDX21 and ADAR1p110, suggesting that they contain DNA-RNA hybrids. Interaction between the BRCT domain of RAP1 and KU70/KU80 is also required to repress UT formation. Expressing TRF2∆B in Rap1-/- cells resulted in aberrant lamin A localization in the nuclear envelope and dramatically increased UT formation. Expressing lamin A phosphomimetic mutants induced nuclear envelope rupturing and aberrant HDR-mediated UT formation. Our results highlight the importance of shelterin and proteins in the nuclear envelope in repressing aberrant telomere-telomere recombination to maintain telomere homeostasis.


Assuntos
Membrana Nuclear , Proteína 2 de Ligação a Repetições Teloméricas , Lamina Tipo A/metabolismo , Membrana Nuclear/metabolismo , Telômero/genética , Telômero/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo
5.
Nat Commun ; 11(1): 5861, 2020 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-33203878

RESUMO

Telomeres protect chromosome ends from inappropriately activating the DNA damage and repair responses. Primary microcephaly is a key clinical feature of several human telomere disorder syndromes, but how microcephaly is linked to dysfunctional telomeres is not known. Here, we show that the microcephalin 1/BRCT-repeats inhibitor of hTERT (MCPH1/BRIT1) protein, mutated in primary microcephaly, specifically interacts with the TRFH domain of the telomere binding protein TRF2. The crystal structure of the MCPH1-TRF2 complex reveals that this interaction is mediated by the MCPH1 330YRLSP334 motif. TRF2-dependent recruitment of MCPH1 promotes localization of DNA damage factors and homology directed repair of dysfunctional telomeres lacking POT1-TPP1. Additionally, MCPH1 is involved in the replication stress response, promoting telomere replication fork progression and restart of stalled telomere replication forks. Our work uncovers a previously unrecognized role for MCPH1 in promoting telomere replication, providing evidence that telomere replication defects may contribute to the onset of microcephaly.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas do Citoesqueleto/metabolismo , Microcefalia/genética , Telômero/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Aminopeptidases/genética , Aminopeptidases/metabolismo , Animais , Sítios de Ligação , Calorimetria , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/química , Proteínas do Citoesqueleto/genética , Dano ao DNA , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Fibroblastos , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Camundongos , Mutação , Domínios e Motivos de Interação entre Proteínas , Serina Proteases/genética , Serina Proteases/metabolismo , Complexo Shelterina , Telômero/metabolismo , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/genética
6.
Cell Rep ; 29(11): 3708-3725.e5, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31825846

RESUMO

Telomeres use shelterin to protect chromosome ends from activating the DNA damage sensor MRE11-RAD50-NBS1 (MRN), repressing ataxia-telangiectasia, mutated (ATM) and ATM and Rad3-related (ATR) dependent DNA damage checkpoint responses. The MRE11 nuclease is thought to be essential for the resection of the 5' C-strand to generate the microhomologies necessary for alternative non-homologous end joining (A-NHEJ) repair. In the present study, we uncover DNA damage signaling and repair pathways engaged by components of the replisome complex to repair dysfunctional telomeres. In cells lacking MRN, single-stranded telomeric overhangs devoid of POT1-TPP1 do not recruit replication protein A (RPA), ATR-interacting protein (ATRIP), and RAD 51. Rather, components of the replisome complex, including Claspin, Proliferating cell nuclear antigen (PCNA), and Downstream neighbor of SON (DONSON), initiate DNA-PKcs-mediated p-CHK1 activation and A-NHEJ repair. In addition, Claspin directly interacts with TRF2 and recruits EXO1 to newly replicated telomeres to promote 5' end resection. Our data indicate that MRN is dispensable for the repair of dysfunctional telomeres lacking POT1-TPP1 and highlight the contributions of the replisome in telomere repair.


Assuntos
Reparo do DNA por Junção de Extremidades , DNA Polimerase Dirigida por DNA/metabolismo , Complexos Multienzimáticos/metabolismo , Telômero/metabolismo , Hidrolases Anidrido Ácido/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Aminopeptidases/deficiência , Aminopeptidases/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Células Cultivadas , Quinase 1 do Ponto de Checagem/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA Polimerase Dirigida por DNA/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/deficiência , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Exodesoxirribonucleases/metabolismo , Células HEK293 , Humanos , Proteína Homóloga a MRE11/metabolismo , Camundongos , Complexos Multienzimáticos/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Serina Proteases/deficiência , Serina Proteases/metabolismo , Complexo Shelterina , Telômero/genética , Proteínas de Ligação a Telômeros/deficiência , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
7.
Cell Res ; 27(12): 1485-1502, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29160297

RESUMO

Telomeres are nucleoprotein complexes that play essential roles in protecting chromosome ends. Mammalian telomeres consist of repetitive DNA sequences bound by the shelterin complex. In this complex, the POT1-TPP1 heterodimer binds to single-stranded telomeric DNAs, while TRF1 and TRF2-RAP1 interact with double-stranded telomeric DNAs. TIN2, the linchpin of this complex, simultaneously interacts with TRF1, TRF2, and TPP1 to mediate the stable assembly of the shelterin complex. However, the molecular mechanism by which TIN2 interacts with these proteins to orchestrate telomere protection remains poorly understood. Here, we report the crystal structure of the N-terminal domain of TIN2 in complex with TIN2-binding motifs from TPP1 and TRF2, revealing how TIN2 interacts cooperatively with TPP1 and TRF2. Unexpectedly, TIN2 contains a telomeric repeat factor homology (TRFH)-like domain that functions as a protein-protein interaction platform. Structure-based mutagenesis analyses suggest that TIN2 plays an important role in maintaining the stable shelterin complex required for proper telomere end protection.


Assuntos
Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Serina Proteases/metabolismo , Complexo Shelterina/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/química , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Animais , Dipeptidil Peptidases e Tripeptidil Peptidases/química , Dipeptidil Peptidases e Tripeptidil Peptidases/isolamento & purificação , Humanos , Camundongos , Conformação Proteica , Serina Proteases/química , Serina Proteases/isolamento & purificação , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/isolamento & purificação , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/isolamento & purificação
8.
Nat Commun ; 8: 14929, 2017 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-28393832

RESUMO

Mammalian shelterin proteins POT1 and TPP1 form a stable heterodimer that protects chromosome ends and regulates telomerase-mediated telomere extension. However, how POT1 interacts with TPP1 remains unknown. Here we present the crystal structure of the C-terminal portion of human POT1 (POT1C) complexed with the POT1-binding motif of TPP1. The structure shows that POT1C contains two domains, a third OB fold and a Holliday junction resolvase-like domain. Both domains are essential for binding to TPP1. Notably, unlike the heart-shaped structure of ciliated protozoan Oxytricha nova TEBPα-ß complex, POT1-TPP1 adopts an elongated V-shaped conformation. In addition, we identify several missense mutations in human cancers that disrupt the POT1C-TPP1 interaction, resulting in POT1 instability. POT1C mutants that bind TPP1 localize to telomeres but fail to repress a DNA damage response and inappropriate repair by A-NHEJ. Our results reveal that POT1 C terminus is essential to prevent initiation of genome instability permissive for tumorigenesis.


Assuntos
Mutação/genética , Neoplasias/genética , Complexo Shelterina/genética , Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Sequência de Aminoácidos , Animais , Sequência Conservada , Dano ao DNA , Análise Mutacional de DNA , Reparo do DNA , Instabilidade Genômica , Humanos , Camundongos , Modelos Moleculares , Chaperonas Moleculares/metabolismo , Neoplasias/patologia , Fosfoproteínas/metabolismo , Prostaglandina-E Sintases , Ligação Proteica , Estrutura Secundária de Proteína , Espalhamento a Baixo Ângulo , Complexo Shelterina/metabolismo , Relação Estrutura-Atividade , Difração de Raios X
9.
Methods Mol Biol ; 1587: 127-131, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28324504

RESUMO

Dysfunctional telomeres arising either through natural attrition due to telomerase deficiency or by the removal of telomere-binding proteins are recognized as double-stranded breaks (DSBs). Repair of DSBs is crucial for the maintenance of genome stability. In mammals, DSBs are repaired by either error-prone nonhomologous end joining (NHEJ) or error-free homologous recombination (HR) and can be visualized as chromosomal fusions.


Assuntos
Telômero/genética , Animais , Células Cultivadas , Análise Citogenética/métodos , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Instabilidade Genômica/genética , Camundongos , Telomerase/genética
10.
Methods Mol Biol ; 1587: 133-138, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28324505

RESUMO

Telomere dysfunctions, rendered through replicative attrition of telomeric DNA or due to the removal of shelterin components, are recognized as DNA double-stranded breaks (DSBs) by the DNA damage repair (DDR) pathway. This leads to the activation of DNA damage checkpoint sensors, including the Mre11-Rad50-Nbs1 (MRN) complex, γ-H2AX and 53BP1, the ATM and ATR signal-transducing kinases, and downstream effectors, including Chk1, Chk2, and p53. Robust DNA damage response signals at dysfunctional telomeres, achieved by the complete deletion of TRF2 or by expressing dominant-negative mutant TPP1ΔRD, can be detected by their association with γ-H2AX and 53BP1 forming "telomere dysfunction induced foci (TIFs)." Induction of TIFs at telomeres provides an opportunity to quantify the extent of telomere dysfunction and monitor downstream signaling pathways.


Assuntos
Dano ao DNA/genética , Telômero/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas de Ciclo Celular/genética , Células Cultivadas , DNA/genética , Quebras de DNA de Cadeia Dupla , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Camundongos , Transdução de Sinais/genética , Proteína 1 de Ligação à Proteína Supressora de Tumor p53/genética
11.
Mol Cell ; 65(5): 801-817.e4, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28216226

RESUMO

Telomeres employ TRF2 to protect chromosome ends from activating the DNA damage sensor MRE11-RAD50-NBS1 (MRN), thereby repressing ATM-dependent DNA damage checkpoint responses. How TRF2 prevents MRN activation at dysfunctional telomeres is unclear. Here, we show that the phosphorylation status of NBS1 determines the repair pathway choice of dysfunctional telomeres. The crystal structure of the TRF2-NBS1 complex at 3.0 Å resolution shows that the NBS1 429YQLSP433 motif interacts specifically with the TRF2TRFH domain. Phosphorylation of NBS1 serine 432 by CDK2 in S/G2 dissociates NBS1 from TRF2, promoting TRF2-Apollo/SNM1B complex formation and the protection of leading-strand telomeres. Classical-NHEJ-mediated repair of telomeres lacking TRF2 requires phosphorylated NBS1S432 to activate ATM, while interaction of de-phosphorylated NBS1S432 with TRF2 promotes alternative-NHEJ repair of telomeres lacking POT1-TPP1. Our work advances understanding of how the TRF2TRFH domain orchestrates telomere end protection and reveals how the phosphorylation status of the NBS1S432 dictates repair pathway choice of dysfunctional telomeres.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Reparo do DNA por Junção de Extremidades , Proteínas Nucleares/metabolismo , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Aminopeptidases/genética , Aminopeptidases/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Quinase 2 Dependente de Ciclina/genética , Quinase 2 Dependente de Ciclina/metabolismo , Enzimas Reparadoras do DNA/genética , Enzimas Reparadoras do DNA/metabolismo , Proteínas de Ligação a DNA , Dipeptidil Peptidases e Tripeptidil Peptidases/genética , Dipeptidil Peptidases e Tripeptidil Peptidases/metabolismo , Exodesoxirribonucleases , Fase G1 , Fase G2 , Células HCT116 , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Fase S , Serina Proteases/genética , Serina Proteases/metabolismo , Complexo Shelterina , Relação Estrutura-Atividade , Telômero/genética , Telômero/patologia , Proteínas de Ligação a Telômeros/genética , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/genética
12.
Nat Commun ; 7: 10881, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26941064

RESUMO

Repressor/activator protein 1 (RAP1) is a highly conserved telomere-interacting protein. Yeast Rap1 protects telomeres from non-homologous end joining (NHEJ), plays important roles in telomere length control and is involved in transcriptional gene regulation. However, a role for mammalian RAP1 in telomere end protection remains controversial. Here we present evidence that mammalian RAP1 is essential to protect telomere from homology directed repair (HDR) of telomeres. RAP1 cooperates with the basic domain of TRF2 (TRF2(B)) to repress PARP1 and SLX4 localization to telomeres. Without RAP1 and TRF2(B), PARP1 and SLX4 HR factors promote rapid telomere resection, resulting in catastrophic telomere loss and the generation of telomere-free chromosome fusions in both mouse and human cells. The RAP1 Myb domain is required to repress both telomere loss and formation of telomere-free fusions. Our results highlight the importance of the RAP1-TRF2 heterodimer in protecting telomeres from inappropriate processing by the HDR pathway.


Assuntos
Deleção de Genes , Regulação da Expressão Gênica/fisiologia , Proteínas Recombinantes/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Animais , Linhagem Celular , Reparo do DNA , Proteínas de Ligação a DNA , Fibroblastos/metabolismo , Instabilidade Genômica , Humanos , Camundongos , Transporte Proteico , Proteínas Recombinantes/genética , Complexo Shelterina , Telômero/fisiologia , Proteínas de Ligação a Telômeros/genética , Proteína 2 de Ligação a Repetições Teloméricas/genética
13.
Methods Mol Biol ; 1343: 175-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26420717

RESUMO

Telomeres are repetitive DNA repeats that cap the ends of all eukaryotic chromosomes. Their proper maintenance is essential for genomic stability and cellular viability. Dysfunctional telomeres could arise through natural attrition of telomeric DNA or due to the removal of shelterin components. These uncapped chromosomal ends are recognized as DSBs by the DDR pathway, leading to the accumulation of DNA damage sensors at telomeres. The association of these DDR proteins with dysfunctional telomeres forms telomere dysfunction induced DNA damage foci (TIFs). Detection of TIFs at telomeres provides an opportunity to quantify the extent of telomere dysfunction and monitor downstream DNA damage signaling pathways. Here we describe a method for the detection of TIFs using a fluorescent in situ hybridization (FISH) approach.


Assuntos
Dano ao DNA , Telômero/metabolismo , Células HEK293 , Humanos , Hibridização in Situ Fluorescente/métodos
14.
Nat Struct Mol Biol ; 18(12): 1400-7, 2011 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-22101936

RESUMO

The mammalian shelterin component TPP1 has essential roles in telomere maintenance and, together with POT1, is required for the repression of DNA damage signaling at telomeres. Here we show that in Mus musculus, the E3 ubiquitin ligase Rnf8 localizes to uncapped telomeres and promotes the accumulation of DNA damage proteins 53Bp1 and γ-H2ax. In the absence of Rnf8, Tpp1 is unstable, resulting in telomere shortening and chromosome fusions through the alternative nonhomologous end-joining (A-NHEJ) repair pathway. The Rnf8 RING-finger domain is essential for Tpp1 stability and retention at telomeres. Rnf8 physically interacts with Tpp1 to generate Ubc13-dependent Lys63 polyubiquitin chains that stabilize Tpp1 at telomeres. The conserved Tpp1 residue Lys233 is important for Rnf8-mediated Tpp1 ubiquitylation and localization to telomeres. Thus, Tpp1 is a newly identified substrate for Rnf8, indicating a previously unrecognized role for Rnf8 in telomere end protection.


Assuntos
Telômero/química , Ubiquitina-Proteína Ligases/fisiologia , Animais , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos de Mamíferos/metabolismo , Dano ao DNA , Proteínas de Ligação a DNA/metabolismo , Histonas/metabolismo , Camundongos , Mapeamento de Interação de Proteínas , Estabilidade Proteica , Proteínas de Ligação a Telômeros , Proteína 1 de Ligação à Proteína Supressora de Tumor p53 , Ubiquitina-Proteína Ligases/análise , Ubiquitina-Proteína Ligases/química , Ubiquitinação
15.
Methods Mol Biol ; 735: 145-50, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21461819

RESUMO

Telomere dysfunctions, rendered through replicative attrition of telomeric DNA or due to the inhibition of shelterin components, are recognized as DNA double-stranded breaks (DSBs) by the DNA damage repair (DDR) pathway. This leads to the activation of DNA damage checkpoint sensors, including the Mre11-Rad50-Nbs1 (MRN) complex, γ-H2AX and 53BP1, the ATM and ATR signal-transducing kinases and downstream effectors, including Chk1, Chk2, and p53. Robust DNA damage response signals at dysfunctional telomeres, achieved by the complete deletion of TRF2 or by expressing dominant negative mutant TPP1(ΔRD), can be detected by their association with γ-H2AX and 53BP1 forming "telomere dysfunction induced foci (TIFs)." Induction of TIFs at telomeres provides an opportunity to quantify the extent of telomere dysfunction and monitor the signaling pathways.


Assuntos
Dano ao DNA , Telômero/genética , Telômero/patologia , Animais , DNA/genética , DNA/metabolismo , Reparo do DNA , Fibroblastos , Células HEK293 , Humanos , Hibridização in Situ Fluorescente , Camundongos , Retroviridae/fisiologia , Telômero/metabolismo , Tripeptidil-Peptidase 1
16.
Nature ; 471(7339): 532-6, 2011 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-21399625

RESUMO

Maintenance of telomeres requires both DNA replication and telomere 'capping' by shelterin. These two processes use two single-stranded DNA (ssDNA)-binding proteins, replication protein A (RPA) and protection of telomeres 1 (POT1). Although RPA and POT1 each have a critical role at telomeres, how they function in concert is not clear. POT1 ablation leads to activation of the ataxia telangiectasia and Rad3-related (ATR) checkpoint kinase at telomeres, suggesting that POT1 antagonizes RPA binding to telomeric ssDNA. Unexpectedly, we found that purified POT1 and its functional partner TPP1 are unable to prevent RPA binding to telomeric ssDNA efficiently. In cell extracts, we identified a novel activity that specifically displaces RPA, but not POT1, from telomeric ssDNA. Using purified protein, here we show that the heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) recapitulates the RPA displacing activity. The RPA displacing activity is inhibited by the telomeric repeat-containing RNA (TERRA) in early S phase, but is then unleashed in late S phase when TERRA levels decline at telomeres. Interestingly, TERRA also promotes POT1 binding to telomeric ssDNA by removing hnRNPA1, suggesting that the re-accumulation of TERRA after S phase helps to complete the RPA-to-POT1 switch on telomeric ssDNA. Together, our data suggest that hnRNPA1, TERRA and POT1 act in concert to displace RPA from telomeric ssDNA after DNA replication, and promote telomere capping to preserve genomic integrity.


Assuntos
DNA de Cadeia Simples/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , RNA/metabolismo , Proteína de Replicação A/metabolismo , Proteínas de Ligação a Telômeros/metabolismo , Telômero/genética , Telômero/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia , Ligação Competitiva , Proteínas de Ciclo Celular/metabolismo , Extratos Celulares , Replicação do DNA , Células HeLa , Ribonucleoproteína Nuclear Heterogênea A1 , Humanos , Ligação Proteica , RNA/genética , Fase S , Complexo Shelterina
17.
Nat Struct Mol Biol ; 18(2): 213-21, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21217703

RESUMO

Repressor activator protein 1 (RAP1) is the most highly conserved telomere protein. It is involved in protecting chromosome ends in fission yeast and promoting gene silencing in Saccharomyces cerevisiae, whereas it represses homology-directed recombination at telomeres in mammals. To understand how RAP1 has such diverse functions at telomeres, we solved the crystal or solution structures of the RAP1 C-terminal (RCT) domains of RAP1 from multiple organisms in complex with their respective protein-binding partners. Our analysis establishes RAP1(RCT) as an evolutionarily conserved protein-protein interaction module. In mammalian and fission yeast cells, this module interacts with TRF2 and Taz1, respectively, targeting RAP1 to chromosome ends for telomere protection. In contrast, S. cerevisiae RAP1 uses its RCT domain to recruit Sir3 to telomeres to mediate gene silencing. Together, our results show that, depending on the organism, the evolutionarily conserved RAP1 RCT motif has diverse functional roles at telomeres.


Assuntos
Proteínas de Ligação a Telômeros/química , Proteínas de Ligação a Telômeros/metabolismo , Telômero/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Células Cultivadas , Cristalografia por Raios X , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Células HeLa , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Saccharomycetales/química , Saccharomycetales/genética , Saccharomycetales/metabolismo , Schizosaccharomyces/química , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Complexo Shelterina , Proteínas de Ligação a Telômeros/genética , Proteína 2 de Ligação a Repetições Teloméricas/química , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
18.
EMBO J ; 29(15): 2598-610, 2010 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-20588252

RESUMO

Repair of DNA double-stranded breaks (DSBs) is crucial for the maintenance of genome stability. DSBs are repaired by either error prone non-homologous end-joining (NHEJ) or error-free homologous recombination. NHEJ precedes either by a classic, Lig4-dependent process (C-NHEJ) or an alternative, Lig4-independent one (A-NHEJ). Dysfunctional telomeres arising either through natural attrition due to telomerase deficiency or by removal of telomere-binding proteins are recognized as DSBs. In this report, we studied which end-joining pathways are required to join dysfunctional telomeres. In agreement with earlier studies, depletion of Trf2 resulted in end-to-end chromosome fusions mediated by the C-NHEJ pathway. In contrast, removal of Tpp1-Pot1a/b initiated robust chromosome fusions that are mediated by A-NHEJ. C-NHEJ is also dispensable for the fusion of naturally shortened telomeres. Our results reveal that telomeres engage distinct DNA repair pathways depending on how they are rendered dysfunctional, and that A-NHEJ is a major pathway to process dysfunctional telomeres.


Assuntos
Reparo do DNA , Telômero , Animais , Antígenos Nucleares/metabolismo , Células Cultivadas , Proteínas Cromossômicas não Histona , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Autoantígeno Ku , Camundongos , Camundongos Knockout , Complexo Shelterina , Proteínas de Ligação a Telômeros , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Proteína 1 de Ligação à Proteína Supressora de Tumor p53
19.
Cell Cycle ; 7(14): 2225-33, 2008 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-18635967

RESUMO

MDC1 and BRIT1 have been shown to function as key regulators in response to DNA damage. However, their roles in centrosomal regulation haven't been elucidated. In this study, we demonstrated the novel functions of these two molecules in regulating centrosome duplication and mitosis. We found that MDC1 and BRIT1 were integral components of the centrosome that colocalize with gamma-tubulin. Depletion of either protein led to centrosome amplification. However, the mechanisms that allow them to maintain centrosome integrity are different. MDC1-depleted cells exhibited centrosome overduplication, leading to multipolar mitosis, chromosome missegregation, and aneuploidy, whereas BRIT1 depletion led to misaligned spindles and/or lagging chromosomes with defective spindle checkpoint activation that resulted in defective cytokinesis and polyploidy. We further illustrated that both MDC1 and BRIT1 were negative regulators of Aurora A and Plk1, two centrosomal kinases involved in centrosome maturation and spindle assembly. Moreover, the levels of MDC1 and BRIT1 inversely correlated with centrosome amplification, defective mitosis and cancer metastasis in human breast cancer. Together, MDC1 and BRIT1 may function as tumor-suppressor genes, at least in part by orchestrating proper centrosome duplication and mitotic spindle assembly.


Assuntos
Centrossomo/metabolismo , Dano ao DNA , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Transativadores/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Aurora Quinases , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Centrossomo/enzimologia , Citocinese , Proteínas do Citoesqueleto , Progressão da Doença , Feminino , Humanos , Mitose , Modelos Biológicos , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas/metabolismo , Fuso Acromático/enzimologia , Quinase 1 Polo-Like
20.
Cancer Genomics Proteomics ; 4(2): 99-106, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17804872

RESUMO

One of the most common features of cancer is genetic instability. In response to numerous DNA-damaging insults, normal cells have evolved a complex mechanism to monitor and repair DNA damage lesions to maintain genomic integrity. The defects in DNA damage response, indeed, have been shown to associate closely with tumorigenesis. This review provides an overview on the molecular events in DNA damage signaling pathway, including cell cycle checkpoint and DNA repair. The recent research discoveries on how dysfunction in DNA damage response contributes to genomic instability and cancer development are also discussed.


Assuntos
Dano ao DNA , Reparo do DNA , Neoplasias/genética , Neoplasias/patologia , Animais , Ciclo Celular , Genoma/genética , Humanos , Neoplasias/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA