Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Heliyon ; 10(2): e24184, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38304848

RESUMO

Background: With the spread of SARS-CoV-2 impacting upon public health directly and socioeconomically, further information was required to inform policy decisions designed to limit virus spread during the pandemic. This study sought to contribute to serosurveillance work within Northern Ireland to track SARS-CoV-2 progression and guide health strategy. Methods: Sera/plasma samples from clinical biochemistry laboratories were analysed for anti-SARS-CoV-2 antibodies. Samples were assessed using an Elecsys anti-SARS-CoV-2 or anti-SARS-CoV-2 S ECLIA (Roche) on an automated cobas e 801 analyser. Samples were also assessed via an anti-SARS-CoV-2 ELISA (Euroimmun). A subset of samples assessed via the Elecsys anti-SARS-CoV-2 ECLIA were subsequently analysed in an ACE2 pseudoneutralisation assay using a V-PLEX SARS-CoV-2 Panel 7 for IgG and ACE2 (Meso Scale Diagnostics). Results: Across three testing rounds (June-July 2020, November-December 2020 and June-July 2021 (rounds 1-3 respectively)), 4844 residual sera/plasma specimens were assayed for anti-SARS-CoV-2 antibodies. Seropositivity rates increased across the study, peaking at 11.6 % (95 % CI 10.4 %-13.0 %) during round 3. Varying trends in SARS-CoV-2 seropositivity were noted based on demographic factors. For instance, highest rates of seropositivity shifted from older to younger demographics across the study period. In round 3, Alpha (B.1.1.7) variant neutralising antibodies were most frequently detected across age groups, with median concentration of anti-spike protein antibodies elevated in 50-69 year olds and anti-S1 RBD antibodies elevated in 70+ year olds, relative to other age groups. Conclusions: With seropositivity rates of <15 % across the assessment period, it can be concluded that the significant proportion of the Northern Ireland population had not yet naturally contracted the virus by mid-2021.

2.
JMIR Res Protoc ; 13: e50733, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354037

RESUMO

BACKGROUND: Health organizations and countries around the world have found it difficult to control the spread of COVID-19. To minimize the future impact on the UK National Health Service and improve patient care, there is a pressing need to identify individuals who are at a higher risk of being hospitalized because of severe COVID-19. Early targeted work was successful in identifying angiotensin-converting enzyme-2 receptors and type II transmembrane serine protease dependency as drivers of severe infection. Although a targeted approach highlights key pathways, a multiomics approach will provide a clearer and more comprehensive picture of severe COVID-19 etiology and progression. OBJECTIVE: The COVID-19 Response Study aims to carry out an integrated multiomics analysis to identify biomarkers in blood and saliva that could contribute to host susceptibility to SARS-CoV-2 and the development of severe COVID-19. METHODS: The COVID-19 Response Study aims to recruit 1000 people who recovered from SARS-CoV-2 infection in both community and hospital settings on the island of Ireland. This protocol describes the retrospective observational study component carried out in Northern Ireland (NI; Cohort A); the Republic of Ireland cohort will be described separately. For all NI participants (n=519), SARS-CoV-2 infection has been confirmed by reverse transcription-quantitative polymerase chain reaction. A prospective Cohort B of 40 patients is also being followed up at 1, 3, 6, and 12 months postinfection to assess longitudinal symptom frequency and immune response. Data will be sourced from whole blood, saliva samples, and clinical data from the electronic care records, the general health questionnaire, and a 12-item general health questionnaire mental health survey. Saliva and blood samples were processed to extract DNA and RNA before whole-genome sequencing, RNA sequencing, DNA methylation analysis, microbiome analysis, 16S ribosomal RNA gene sequencing, and proteomic analysis were performed on the plasma. Multiomics data will be combined with clinical data to produce sensitive and specific prognostic models for severity risk. RESULTS: An initial demographic and clinical profile of the NI Cohort A has been completed. A total of 249 hospitalized patients and 270 nonhospitalized patients were recruited, of whom 184 (64.3%) were female, and the mean age was 45.4 (SD 13) years. High levels of comorbidity were evident in the hospitalized cohort, with cardiovascular disease and metabolic and respiratory disorders being the most significant (P<.001), grouped according to the International Classification of Diseases 10 codes. CONCLUSIONS: This study will provide a comprehensive opportunity to study the mechanisms of COVID-19 severity in recontactable participants. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/50733.

3.
PLOS Glob Public Health ; 3(4): e0001795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37097994

RESUMO

We sought to determine the most efficacious and cost-effective strategy to follow when developing a national screening programme by comparing and contrasting the national screening programmes of Norway, the Netherlands and the UK. Comparing the detection rates and screening profiles between the Netherlands, Norway, the UK and constituent nations (England, Northern Ireland, Scotland and Wales) it is clear that maximising the number of relatives screened per index case leads to identification of the greatest proportion of an FH population. The UK has stated targets to detect 25% of the population of England with FH across the 5 years to 2024 with the NHS Long Term Plan. However, this is grossly unrealistic and, based on pre-pandemic rates, will only be reached in the year 2096. We also modelled the efficacy and cost-effectiveness of two screening strategies: 1) Universal screening of 1-2-year-olds, 2) electronic healthcare record screening, in both cases coupled to reverse cascade screening. We found that index case detection from electronic healthcare records was 56% more efficacious than universal screening and, depending on the cascade screening rate of success, 36%-43% more cost-effective per FH case detected. The UK is currently trialling universal screening of 1-2-year-olds to contribute to national FH detection targets. Our modelling suggests that this is not the most efficacious or cost-effective strategy to follow. For countries looking to develop national FH programmes, screening of electronic healthcare records, coupled to successful cascade screening to blood relatives is likely to be a preferable strategy to follow.

4.
Brief Bioinform ; 23(1)2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34962259

RESUMO

The current global pandemic due to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has taken a substantial number of lives across the world. Although few vaccines have been rolled-out, a number of vaccine candidates are still under clinical trials at various pharmaceutical companies and laboratories around the world. Considering the intrinsic nature of viruses in mutating and evolving over time, persistent efforts are needed to develop better vaccine candidates. In this study, various immuno-informatics tools and bioinformatics databases were deployed to derive consensus B-cell and T-cell epitope sequences of SARS-CoV-2 spike glycoprotein. This approach has identified four potential epitopes which have the capability to initiate both antibody and cell-mediated immune responses, are non-allergenic and do not trigger autoimmunity. These peptide sequences were also evaluated to show 99.82% of global population coverage based on the genotypic frequencies of HLA binding alleles for both MHC class-I and class-II and are unique for SARS-CoV-2 isolated from human as a host species. Epitope number 2 alone had a global population coverage of 98.2%. Therefore, we further validated binding and interaction of its constituent T-cell epitopes with their corresponding HLA proteins using molecular docking and molecular dynamics simulation experiments, followed by binding free energy calculations with molecular mechanics Poisson-Boltzmann surface area, essential dynamics analysis and free energy landscape analysis. The immuno-informatics pipeline described and the candidate epitopes discovered herein could have significant impact upon efforts to develop globally effective SARS-CoV-2 vaccines.


Assuntos
Vacinas contra COVID-19 , Epitopos de Linfócito B , Epitopos de Linfócito T , Simulação de Acoplamento Molecular , SARS-CoV-2 , Vacinas contra COVID-19/química , Vacinas contra COVID-19/imunologia , Epitopos de Linfócito B/química , Epitopos de Linfócito B/imunologia , Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Humanos , SARS-CoV-2/química , SARS-CoV-2/imunologia , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia
5.
Cells ; 10(12)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34943875

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has resulted in a global pandemic associated with substantial morbidity and mortality worldwide, with particular risk for severe disease and mortality in the elderly population. SARS-CoV-2 infection is driven by a pathological hyperinflammatory response which results in a dysregulated immune response. Current advancements in aging research indicates that aging pathways have fundamental roles in dictating healthspan in addition to lifespan. Our review discusses the aging immune system and highlights that senescence and aging together, play a central role in COVID-19 pathogenesis. In our review, we primarily focus on the immune system response to SARS-CoV-2 infection, the interconnection between severe COVID-19, immunosenescence, aging, vaccination, and the emerging problem of Long-COVID. We hope to highlight the importance of identifying specific senescent endotypes (or "sendotypes"), which can used as determinants of COVID-19 severity and mortality. Indeed, identified sendotypes could be therapeutically exploited for therapeutic intervention. We highlight that senolytics, which eliminate senescent cells, can target aging-associated pathways and therefore are proving attractive as potential therapeutic options to alleviate symptoms, prevent severe infection, and reduce mortality burden in COVID-19 and thus ultimately enhance healthspan.


Assuntos
Envelhecimento/patologia , COVID-19/patologia , SARS-CoV-2/fisiologia , Animais , Biomarcadores/metabolismo , Senescência Celular , Humanos , Pesquisa Translacional Biomédica
6.
Cells ; 10(8)2021 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-34440777

RESUMO

Vitamin D and cholesterol metabolism overlap significantly in the pathways that contribute to their biosynthesis. However, our understanding of their independent and co-regulation is limited. Cardiovascular disease is the leading cause of death globally and atherosclerosis, the pathology associated with elevated cholesterol, is the leading cause of cardiovascular disease. It is therefore important to understand vitamin D metabolism as a contributory factor. From the literature, we compile evidence of how these systems interact, relating the understanding of the molecular mechanisms involved to the results from observational studies. We also present the first systems biology pathway map of the joint cholesterol and vitamin D metabolisms made available using the Systems Biology Graphical Notation (SBGN) Markup Language (SBGNML). It is shown that the relationship between vitamin D supplementation, total cholesterol, and LDL-C status, and between latitude, vitamin D, and cholesterol status are consistent with our knowledge of molecular mechanisms. We also highlight the results that cannot be explained with our current knowledge of molecular mechanisms: (i) vitamin D supplementation mitigates the side-effects of statin therapy; (ii) statin therapy does not impact upon vitamin D status; and critically (iii) vitamin D supplementation does not improve cardiovascular outcomes, despite improving cardiovascular risk factors. For (iii), we present a hypothesis, based on observations in the literature, that describes how vitamin D regulates the balance between cellular and plasma cholesterol. Answering these questions will create significant opportunities for advancement in our understanding of cardiovascular health.


Assuntos
Doenças Cardiovasculares/metabolismo , Colesterol/metabolismo , Dislipidemias/metabolismo , Deficiência de Vitamina D/metabolismo , Vitamina D/metabolismo , Animais , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controle , Colesterol/sangue , LDL-Colesterol/metabolismo , Dislipidemias/tratamento farmacológico , Dislipidemias/epidemiologia , Fatores de Risco de Doenças Cardíacas , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Modelos Biológicos , Prognóstico , Medição de Risco , Biologia de Sistemas , Vitamina D/uso terapêutico , Deficiência de Vitamina D/tratamento farmacológico , Deficiência de Vitamina D/epidemiologia
7.
Ageing Res Rev ; 69: 101363, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34023420

RESUMO

Cellular senescence is a state of growth arrest that occurs after cells encounter various stresses. Senescence contributes to tumour suppression, embryonic development, and wound healing. It impacts on the pathology of various diseases by secreting inflammatory chemokines, immune modulators and other bioactive factors. These secretory biosignatures ultimately cause inflammation, tissue fibrosis, immunosenescence and many ageing-related diseases such as atrial fibrillation (AF). Because the molecular mechanisms underpinning AF development remain unclear, current treatments are suboptimal and have serious side effects. In this review, we summarize recent results describing the role of senescence in AF. We propose that senescence factors induce AF and have a causative role. Hence, targeting senescence and its secretory phenotype may attenuate AF.


Assuntos
Fibrilação Atrial , Imunossenescência , Fibrilação Atrial/tratamento farmacológico , Senescência Celular , Desenvolvimento de Medicamentos , Fibrose , Humanos
8.
Brief Bioinform ; 22(2): 1543-1559, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33197934

RESUMO

Systems medicine (SM) has emerged as a powerful tool for studying the human body at the systems level with the aim of improving our understanding, prevention and treatment of complex diseases. Being able to automatically extract relevant features needed for a given task from high-dimensional, heterogeneous data, deep learning (DL) holds great promise in this endeavour. This review paper addresses the main developments of DL algorithms and a set of general topics where DL is decisive, namely, within the SM landscape. It discusses how DL can be applied to SM with an emphasis on the applications to predictive, preventive and precision medicine. Several key challenges have been highlighted including delivering clinical impact and improving interpretability. We used some prototypical examples to highlight the relevance and significance of the adoption of DL in SM, one of them is involving the creation of a model for personalized Parkinson's disease. The review offers valuable insights and informs the research in DL and SM.


Assuntos
Aprendizado Profundo , Análise de Sistemas , Algoritmos , Biomarcadores/metabolismo , Doença/classificação , Registros Eletrônicos de Saúde , Genômica , Humanos , Metabolômica , Redes Neurais de Computação , Medicina de Precisão/métodos , Proteômica , Transcriptoma
9.
PLoS Pathog ; 15(3): e1007667, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30901352

RESUMO

Host innate immune defences play a critical role in restricting the intracellular propagation and pathogenesis of invading viral pathogens. Here we show that the histone H3.3 chaperone HIRA (histone cell cycle regulator) associates with promyelocytic leukaemia nuclear bodies (PML-NBs) to stimulate the induction of innate immune defences against herpes simplex virus 1 (HSV-1) infection. Following the activation of innate immune signalling, HIRA localized at PML-NBs in a Janus-Associated Kinase (JAK), Cyclin Dependent Kinase (CDK), and Sp100-dependent manner. RNA-seq analysis revealed that HIRA promoted the transcriptional upregulation of a broad repertoire of host genes that regulate innate immunity to HSV-1 infection, including those involved in MHC-I antigen presentation, cytokine signalling, and interferon stimulated gene (ISG) expression. ChIP-seq analysis revealed that PML, the principle scaffolding protein of PML-NBs, was required for the enrichment of HIRA onto ISGs, identifying a role for PML in the HIRA-dependent regulation of innate immunity to virus infection. Our data identifies independent roles for HIRA in the intrinsic silencing of viral gene expression and the induction of innate immune defences to restrict the initiation and propagation of HSV-1 infection, respectively. These intracellular host defences are antagonized by the HSV-1 ubiquitin ligase ICP0, which disrupts the stable recruitment of HIRA to infecting viral genomes and PML-NBs at spatiotemporally distinct phases of infection. Our study highlights the importance of histone chaperones to regulate multiple phases of intracellular immunity to virus infection, findings that are likely to be highly pertinent in the cellular restriction of many clinically important viral pathogens.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Fibroblastos/imunologia , Infecções por Herpesviridae/imunologia , Herpesvirus Humano 1/patogenicidade , Chaperonas de Histonas/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata/imunologia , Fatores de Transcrição/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Fibroblastos/citologia , Fibroblastos/virologia , Regulação Viral da Expressão Gênica , Infecções por Herpesviridae/metabolismo , Infecções por Herpesviridae/virologia , Chaperonas de Histonas/genética , Humanos , Fatores de Transcrição/genética , Replicação Viral
10.
Nucleic Acids Res ; 45(20): 11673-11683, 2017 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-28981850

RESUMO

The HIRA histone chaperone complex deposits histone H3.3 into nucleosomes in a DNA replication- and sequence-independent manner. As herpesvirus genomes enter the nucleus as naked DNA, we asked whether the HIRA chaperone complex affects herpesvirus infection. After infection of primary cells with HSV or CMV, or transient transfection with naked plasmid DNA, HIRA re-localizes to PML bodies, sites of cellular anti-viral activity. HIRA co-localizes with viral genomes, binds to incoming viral and plasmid DNAs and deposits histone H3.3 onto these. Anti-viral interferons (IFN) specifically induce HIRA/PML co-localization at PML nuclear bodies and HIRA recruitment to IFN target genes, although HIRA is not required for IFN-inducible expression of these genes. HIRA is, however, required for suppression of viral gene expression, virus replication and lytic infection and restricts murine CMV replication in vivo. We propose that the HIRA chaperone complex represses incoming naked viral DNAs through chromatinization as part of intrinsic cellular immunity.


Assuntos
Proteínas de Ciclo Celular/metabolismo , DNA Viral/metabolismo , Herpesvirus Humano 1/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/imunologia , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Cromatina/virologia , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/metabolismo , Infecções por Citomegalovirus/virologia , DNA Viral/genética , Células HEK293 , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Chaperonas de Histonas/genética , Chaperonas de Histonas/imunologia , Humanos , Corpos de Inclusão/imunologia , Corpos de Inclusão/metabolismo , Corpos de Inclusão/virologia , Camundongos Endogâmicos C57BL , Muromegalovirus/genética , Muromegalovirus/fisiologia , Proteína da Leucemia Promielocítica/metabolismo , Ligação Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia
11.
J Invest Dermatol ; 137(10): 2197-2207, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28647344

RESUMO

On acquisition of an oncogenic mutation, primary human and mouse cells can enter oncogene-induced senescence (OIS). OIS is characterized by a stable proliferation arrest and secretion of proinflammatory cytokines and chemokines, the senescence-associated secretory phenotype. Proliferation arrest and the senescence-associated secretory phenotype collaborate to enact tumor suppression, the former by blocking cell proliferation and the latter by recruiting immune cells to clear damaged cells. However, the interactions of OIS cells with the immune system are still poorly defined. Here, we show that engagement of OIS in primary human melanocytes, specifically by melanoma driver mutations NRASQ61K and BRAFV600E, causes expression of the major histocompatibility class II antigen presentation apparatus, via secreted IL-1ß signaling and expression of CIITA, a master regulator of major histocompatibility class II gene transcription. In vitro, OIS melanocytes activate T-cell proliferation. In vivo, nonproliferating oncogene-expressing melanocytes localize to skin-draining lymph nodes, where they induce T-cell proliferation and an antigen presentation gene expression signature. In patients, expression of major histocompatibility class II in melanoma is linked to favorable disease outcome. We propose that OIS in melanocytes is accompanied by an antigen presentation phenotype, likely to promote tumor suppression via activation of the adaptive immune system.


Assuntos
Genes MHC da Classe II/genética , Melanócitos/metabolismo , Melanoma/genética , Oncogenes/genética , Regulação para Cima , Animais , Linhagem Celular Tumoral , Proliferação de Células , Senescência Celular , Humanos , Melanócitos/patologia , Melanoma/metabolismo , Melanoma/patologia , Camundongos , Transdução de Sinais
12.
Aging Cell ; 16(2): 210-218, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28124466

RESUMO

Cellular senescence is a state of stable proliferation arrest of cells. The senescence pathway has many beneficial effects and is seen to be activated in damaged/stressed cells, as well as during embryonic development and wound healing. However, the persistence and accumulation of senescent cells in various tissues can also impair function and have been implicated in the pathogenesis of many age-related diseases. Osteoarthritis (OA), a severely debilitating chronic condition characterized by progressive tissue remodeling and loss of joint function, is the most prevalent disease of the synovial joints, and increasing age is the primary OA risk factor. The profile of inflammatory and catabolic mediators present during the pathogenesis of OA is strikingly similar to the secretory profile observed in 'classical' senescent cells. During OA, chondrocytes (the sole cell type present within articular cartilage) exhibit increased levels of various senescence markers, such as senescence-associated beta-galactosidase (SAßGal) activity, telomere attrition, and accumulation of p16ink4a. This suggests the hypothesis that senescence of cells within joint tissues may play a pathological role in the causation of OA. In this review, we discuss the mechanisms by which senescent cells may predispose synovial joints to the development and/or progression of OA, as well as touching upon various epigenetic alterations associated with both OA and senescence.


Assuntos
Senescência Celular , Osteoartrite/patologia , Animais , Senescência Celular/genética , Epigênese Genética , Humanos , Modelos Biológicos , Osteoartrite/genética
13.
Genome Biol ; 17(1): 158, 2016 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-27457071

RESUMO

BACKGROUND: Histone modification H4K20me3 and its methyltransferase SUV420H2 have been implicated in suppression of tumorigenesis. The underlying mechanism is unclear, although H4K20me3 abundance increases during cellular senescence, a stable proliferation arrest and tumor suppressor process, triggered by diverse molecular cues, including activated oncogenes. Here, we investigate the function of H4K20me3 in senescence and tumor suppression. RESULTS: Using immunofluorescence and ChIP-seq we determine the distribution of H4K20me3 in proliferating and senescent human cells. Altered H4K20me3 in senescence is coupled to H4K16ac and DNA methylation changes in senescence. In senescent cells, H4K20me3 is especially enriched at DNA sequences contained within specialized domains of senescence-associated heterochromatin foci (SAHF), as well as specific families of non-genic and genic repeats. Altered H4K20me3 does not correlate strongly with changes in gene expression between proliferating and senescent cells; however, in senescent cells, but not proliferating cells, H4K20me3 enrichment at gene bodies correlates inversely with gene expression, reflecting de novo accumulation of H4K20me3 at repressed genes in senescent cells, including at genes also repressed in proliferating cells. Although elevated SUV420H2 upregulates H4K20me3, this does not accelerate senescence of primary human cells. However, elevated SUV420H2/H4K20me3 reinforces oncogene-induced senescence-associated proliferation arrest and slows tumorigenesis in vivo. CONCLUSIONS: These results corroborate a role for chromatin in underpinning the senescence phenotype but do not support a major role for H4K20me3 in initiation of senescence. Rather, we speculate that H4K20me3 plays a role in heterochromatinization and stabilization of the epigenome and genome of pre-malignant, oncogene-expressing senescent cells, thereby suppressing epigenetic and genetic instability and contributing to long-term senescence-mediated tumor suppression.


Assuntos
Carcinogênese/genética , Senescência Celular/genética , Cromatina/genética , Histona-Lisina N-Metiltransferase/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Metilação de DNA/genética , Epigênese Genética/genética , Regulação Neoplásica da Expressão Gênica/genética , Heterocromatina/genética , Histonas/genética , Humanos , Nevo/metabolismo , Nevo/patologia
14.
Genes Dev ; 30(3): 321-36, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26833731

RESUMO

Oncogene-induced senescence (OIS) and therapy-induced senescence (TIS), while tumor-suppressive, also promote procarcinogenic effects by activating the DNA damage response (DDR), which in turn induces inflammation. This inflammatory response prominently includes an array of cytokines known as the senescence-associated secretory phenotype (SASP). Previous observations link the transcription-associated methyltransferase and oncoprotein MLL1 to the DDR, leading us to investigate the role of MLL1 in SASP expression. Our findings reveal direct MLL1 epigenetic control over proproliferative cell cycle genes: MLL1 inhibition represses expression of proproliferative cell cycle regulators required for DNA replication and DDR activation, thus disabling SASP expression. Strikingly, however, these effects of MLL1 inhibition on SASP gene expression do not impair OIS and, furthermore, abolish the ability of the SASP to enhance cancer cell proliferation. More broadly, MLL1 inhibition also reduces "SASP-like" inflammatory gene expression from cancer cells in vitro and in vivo independently of senescence. Taken together, these data demonstrate that MLL1 inhibition may be a powerful and effective strategy for inducing cancerous growth arrest through the direct epigenetic regulation of proliferation-promoting genes and the avoidance of deleterious OIS- or TIS-related tumor secretomes, which can promote both drug resistance and tumor progression.


Assuntos
Senescência Celular/genética , Regulação Neoplásica da Expressão Gênica/genética , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Proteína de Leucina Linfoide-Mieloide/genética , Proteína de Leucina Linfoide-Mieloide/metabolismo , Transdução de Sinais/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proliferação de Células , Dano ao DNA , Técnicas de Silenciamento de Genes , Células HEK293 , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Humanos , Inflamação/genética , Células MCF-7 , Proteína de Leucina Linfoide-Mieloide/antagonistas & inibidores , NF-kappa B/metabolismo , Neoplasias/fisiopatologia , Fenótipo
15.
Genes Dev ; 28(24): 2712-25, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25512559

RESUMO

Cellular senescence is a stable proliferation arrest that suppresses tumorigenesis. Cellular senescence and associated tumor suppression depend on control of chromatin. Histone chaperone HIRA deposits variant histone H3.3 and histone H4 into chromatin in a DNA replication-independent manner. Appropriately for a DNA replication-independent chaperone, HIRA is involved in control of chromatin in nonproliferating senescent cells, although its role is poorly defined. Here, we show that nonproliferating senescent cells express and incorporate histone H3.3 and other canonical core histones into a dynamic chromatin landscape. Expression of canonical histones is linked to alternative mRNA splicing to eliminate signals that confer mRNA instability in nonproliferating cells. Deposition of newly synthesized histones H3.3 and H4 into chromatin of senescent cells depends on HIRA. HIRA and newly deposited H3.3 colocalize at promoters of expressed genes, partially redistributing between proliferating and senescent cells to parallel changes in expression. In senescent cells, but not proliferating cells, promoters of active genes are exceptionally enriched in H4K16ac, and HIRA is required for retention of H4K16ac. HIRA is also required for retention of H4K16ac in vivo and suppression of oncogene-induced neoplasia. These results show that HIRA controls a specialized, dynamic H4K16ac-decorated chromatin landscape in senescent cells and enforces tumor suppression.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Senescência Celular/fisiologia , Chaperonas de Histonas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Antineoplásicos Hormonais/farmacologia , Carcinogênese/efeitos dos fármacos , Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular , Proliferação de Células , Senescência Celular/genética , Cromatina/metabolismo , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Marcadores Genéticos , Chaperonas de Histonas/genética , Histonas/genética , Histonas/metabolismo , Humanos , Masculino , Camundongos , Papiloma/patologia , Neoplasias Cutâneas/patologia , Tamoxifeno/farmacologia , Fatores de Transcrição/genética
16.
Nature ; 504(7479): 296-300, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24305049

RESUMO

Macroautophagy (hereafter referred to as autophagy) is a process in which organelles termed autophagosomes deliver cytoplasmic constituents to lysosomes for degradation. Autophagy has a major role in cellular homeostasis and has been implicated in various forms of human disease. The role of autophagy in cancer seems to be complex, with reports indicating both pro-tumorigenic and tumour-suppressive roles. Here we show, in a humanized genetically-modified mouse model of pancreatic ductal adenocarcinoma (PDAC), that autophagy's role in tumour development is intrinsically connected to the status of the tumour suppressor p53. Mice with pancreases containing an activated oncogenic allele of Kras (also called Ki-Ras)--the most common mutational event in PDAC--develop a small number of pre-cancerous lesions that stochastically develop into PDAC over time. However, mice also lacking the essential autophagy genes Atg5 or Atg7 accumulate low-grade, pre-malignant pancreatic intraepithelial neoplasia lesions, but progression to high-grade pancreatic intraepithelial neoplasias and PDAC is blocked. In marked contrast, in mice containing oncogenic Kras and lacking p53, loss of autophagy no longer blocks tumour progression, but actually accelerates tumour onset, with metabolic analysis revealing enhanced glucose uptake and enrichment of anabolic pathways, which can fuel tumour growth. These findings provide considerable insight into the role of autophagy in cancer and have important implications for autophagy inhibition in cancer therapy. In this regard, we also show that treatment of mice with the autophagy inhibitor hydroxychloroquine, which is currently being used in several clinical trials, significantly accelerates tumour formation in mice containing oncogenic Kras but lacking p53.


Assuntos
Autofagia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patologia , Genes p53/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Proteína Supressora de Tumor p53/genética , Alelos , Animais , Autofagia/efeitos dos fármacos , Autofagia/genética , Proteína 5 Relacionada à Autofagia , Proteína 7 Relacionada à Autofagia , Carcinoma Ductal Pancreático/metabolismo , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glucose/metabolismo , Glicólise/genética , Humanos , Hidroxicloroquina/farmacologia , Metabolômica , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C57BL , Proteínas Associadas aos Microtúbulos/genética , Proteína Oncogênica p21(ras)/genética , Neoplasias Pancreáticas/metabolismo , Via de Pentose Fosfato/genética , Lesões Pré-Cancerosas/genética , Lesões Pré-Cancerosas/metabolismo , Lesões Pré-Cancerosas/patologia , Análise de Sobrevida , Proteína Supressora de Tumor p53/deficiência , Proteína Supressora de Tumor p53/metabolismo
17.
Genes Dev ; 27(16): 1787-99, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23934658

RESUMO

Senescence is a stable proliferation arrest, associated with an altered secretory pathway, thought to promote tumor suppression and tissue aging. While chromatin regulation and lamin B1 down-regulation have been implicated as senescence effectors, functional interactions between them are poorly understood. We compared genome-wide Lys4 trimethylation on histone H3 (H3K4me3) and H3K27me3 distributions between proliferating and senescent human cells and found dramatic differences in senescence, including large-scale domains of H3K4me3- and H3K27me3-enriched "mesas" and H3K27me3-depleted "canyons." Mesas form at lamin B1-associated domains (LADs) in replicative senescence and oncogene-induced senescence and overlap DNA hypomethylation regions in cancer, suggesting that pre-malignant senescent chromatin changes foreshadow epigenetic cancer changes. Hutchinson-Gilford progeria syndrome fibroblasts (mutant lamin A) also show evidence of H3K4me3 mesas, suggesting a link between premature chromatin changes and accelerated cell senescence. Canyons mostly form between LADs and are enriched in genes and enhancers. H3K27me3 loss is correlated with up-regulation of key senescence genes, indicating a link between global chromatin changes and local gene expression regulation. Lamin B1 reduction in proliferating cells triggers senescence and formation of mesas and canyons. Our data illustrate profound chromatin reorganization during senescence and suggest that lamin B1 down-regulation in senescence is a key trigger of global and local chromatin changes that impact gene expression, aging, and cancer.


Assuntos
Envelhecimento/genética , Envelhecimento/patologia , Cromatina/genética , Cromatina/metabolismo , Regulação da Expressão Gênica , Lamina Tipo B/genética , Lamina Tipo B/metabolismo , Linhagem Celular , Proliferação de Células , Células Cultivadas , Montagem e Desmontagem da Cromatina , Epigênese Genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Histonas/metabolismo , Humanos , Metilação , Progéria/patologia , Estrutura Terciária de Proteína
18.
J Cell Biol ; 202(1): 129-43, 2013 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-23816621

RESUMO

Cellular senescence is a stable proliferation arrest, a potent tumor suppressor mechanism, and a likely contributor to tissue aging. Cellular senescence involves extensive cellular remodeling, including of chromatin structure. Autophagy and lysosomes are important for recycling of cellular constituents and cell remodeling. Here we show that an autophagy/lysosomal pathway processes chromatin in senescent cells. In senescent cells, lamin A/C-negative, but strongly γ-H2AX-positive and H3K27me3-positive, cytoplasmic chromatin fragments (CCFs) budded off nuclei, and this was associated with lamin B1 down-regulation and the loss of nuclear envelope integrity. In the cytoplasm, CCFs were targeted by the autophagy machinery. Senescent cells exhibited markers of lysosomal-mediated proteolytic processing of histones and were progressively depleted of total histone content in a lysosome-dependent manner. In vivo, depletion of histones correlated with nevus maturation, an established histopathologic parameter associated with proliferation arrest and clinical benignancy. We conclude that senescent cells process their chromatin via an autophagy/lysosomal pathway and that this might contribute to stability of senescence and tumor suppression.


Assuntos
Senescência Celular , Cromatina/metabolismo , Lisossomos/metabolismo , Autofagia , Transporte Biológico , Permeabilidade da Membrana Celular , Núcleo Celular/metabolismo , Células Cultivadas , Cromatina/genética , Montagem e Desmontagem da Cromatina , Citoplasma/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Histonas/metabolismo , Humanos , Laminina/metabolismo , Membrana Nuclear/metabolismo , Proteólise , Imagem com Lapso de Tempo
19.
Cell Rep ; 3(4): 1012-9, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23602572

RESUMO

The HIRA chaperone complex, comprised of HIRA, UBN1, and CABIN1, collaborates with histone-binding protein ASF1a to incorporate histone variant H3.3 into chromatin in a DNA replication-independent manner. To better understand HIRA's function and mechanism, we integrated HIRA, UBN1, ASF1a, and histone H3.3 chromatin immunoprecipitation sequencing and gene expression analyses. Most HIRA-binding sites colocalize with UBN1, ASF1a, and H3.3 at active promoters and active and weak/poised enhancers. At promoters, binding of HIRA/UBN1/ASF1a correlates with the level of gene expression. HIRA is required for deposition of histone H3.3 at its binding sites. There are marked differences in nucleosome and coregulator composition at different classes of HIRA-bound regulatory sites. Underscoring this, we report physical interactions between the HIRA complex and transcription factors, a chromatin insulator and an ATP-dependent chromatin-remodeling complex. Our results map the distribution of the HIRA chaperone across the chromatin landscape and point to different interacting partners at functionally distinct regulatory sites.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Fatores de Transcrição/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Imunoprecipitação da Cromatina , Análise por Conglomerados , Loci Gênicos , Células HeLa , Chaperonas de Histonas/antagonistas & inibidores , Chaperonas de Histonas/genética , Histonas/genética , Humanos , Chaperonas Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
20.
J Clin Invest ; 123(3): 1157-75, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23434594

RESUMO

Concurrent activation of RAS/ERK and PI3K/AKT pathways is implicated in prostate cancer progression. The negative regulators of these pathways, including sprouty2 (SPRY2), protein phosphatase 2A (PP2A), and phosphatase and tensin homolog (PTEN), are commonly inactivated in prostate cancer. The molecular basis of cooperation between these genetic alterations is unknown. Here, we show that SPRY2 deficiency alone triggers activation of AKT and ERK, but this is insufficient to drive tumorigenesis. In addition to AKT and ERK activation, SPRY2 loss also activates a PP2A-dependent tumor suppressor checkpoint. Mechanistically, the PP2A-mediated growth arrest depends on GSK3ß and is ultimately mediated by nuclear PTEN. In murine prostate cancer models, Pten haploinsufficiency synergized with Spry2 deficiency to drive tumorigenesis, including metastasis. Together, these results show that loss of Pten cooperates with Spry2 deficiency by bypassing a novel tumor suppressor checkpoint. Furthermore, loss of SPRY2 expression correlates strongly with loss of PTEN and/or PP2A subunits in human prostate cancer. This underlines the cooperation between SPRY2 deficiency and PTEN or PP2A inactivation in promoting tumorigenesis. Overall, we propose SPRY2, PTEN, and PP2A status as an important determinant of prostate cancer progression. Characterization of this trio may facilitate patient stratification for targeted therapies and chemopreventive interventions.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Neoplasias da Próstata/metabolismo , Proteína Fosfatase 2/metabolismo , Animais , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Proliferação de Células , Transformação Celular Neoplásica/metabolismo , Progressão da Doença , Ativação Enzimática , Pontos de Checagem da Fase G1 do Ciclo Celular , Técnicas de Silenciamento de Genes , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Proteínas de Membrana , Camundongos , Camundongos Nus , Camundongos Transgênicos , Transplante de Neoplasias , Fosforilação , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/patologia , Processamento de Proteína Pós-Traducional , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Análise Serial de Tecidos , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...