Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940535

RESUMO

The elegance and accuracy of biological ion channels inspire the fabrication of artificial devices with similar properties. Here, we report the fabrication of iontronic devices capable of delivering ions at the nanomolar (nmol) level of accuracy. The triangular nanofluidic device prepared with reconstructed vanadium pentoxide (VO) membranes of thickness 45 ± 5.5 µm can continuously deliver K+, Na+, and Ca2+ ions at the rate of 0.44 ± 0.24, 0.35 ± 0.06, and 0.03 nmol/min, respectively. The ionic flow rate can be further tuned by modulating the membrane thickness and salt concentration at the source reservoir. The triangular VO device can also deliver ions in minuscule doses (∼132 ± 9.7 nmol) by electrothermally heating (33 °C) with a nichrome wire (NW) or applying light of specific intensities. The simplicity of the fabrication process of reconstructed layered material-based nanofluidic devices allows the design of complicated iontronic devices such as the three-terminal-Ni-VO (3T-Ni-VO) devices.

2.
Mater Horiz ; 10(8): 3072-3081, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37218431

RESUMO

The recent trend in thermoelectric literature suggests that ionic thermoelectric (i-TE) materials are ideal for directly converting low-grade waste heat into electricity. Here, we developed a unique platform for i-TE studies by stacking two-dimensional sheets of ß-Ni(OH)2 prepared by a bottom-up method. The lamellar membrane of ß-Ni(OH)2 (Ni-M) itself does not display significant thermovoltages, but when doped with mobile anion-generating species (like aminopropyl functionalized magnesium phyllosilicate or organic halide salts), it exhibits significant negative Seebeck coefficient (up to -13.7 ± 0.2 mV K-1). Similarly, upon doping with cation-generating species like poly(4-styrene sulfonic acid) (PSS), it displays positive Seebeck coefficient values (up to +12 ± 1.9 mV K-1). The positive and negative i-TE materials prepared by doping Ni-M are assembled into ionic thermopiles capable of generating thermovoltages up to 1 V, at ΔT = 12 K. The Ni-M-based nanofluidic systems demonstrated an additional path of electricity harvesting by connecting colder zones of the positive and negative i-TE materials with other ion conducting membranes. In contrast to organic polymer-based i-TE systems, the Ni-M based system exhibited consistent performance despite being exposed to high temperatures (∼200 °C, 5 minutes).

3.
ACS Omega ; 6(31): 20379-20387, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34395986

RESUMO

In the form of leaves, nature designs the finest photothermal evaporators, and the tremendous evaporation efficiency of leaves is supported by a precisely designed network of veins. Here, we have demonstrated that the vein network of a natural leaf can be extracted through a simple water-assisted digestion process and exploited for low-energy steam generation. The naked leaf veins exhibit a remarkable flux (evaporation rate, 1.5 kg·m-2·h-1) of capillary evaporation under ambient conditions (25 °C and 30% RH), close to the photothermal material-based evaporators reported in the recent literature. Even inside a dark box, naked veins exhibit an evaporation rate up to 4.5 kg·m-2·h-1 (at 30% relative humidity (RH) and a wind speed of 22 km·h-1). The mechanistic studies performed with variable atmospheric conditions (temperature, humidity, and wind speed) suggest the evaporation process through the naked veins to be a kinetic-limited process. Naked veins with remarkable evaporation efficiency are found to be suitable for applications like water desalination and streaming potential harvesting. Experiments with the naked veins also unveiled that the biofluidic channels in leaves not only exhibit the characteristics of surface charge-governed ionic transport but also support an exceptional water transport velocity of 1444 µm·s-1.

4.
Chem Commun (Camb) ; 56(96): 15220-15223, 2020 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-33231224

RESUMO

Long-range antiferromagnetic coupling impeded electron flow through the hexaradical-containing tetranuclear CoIII4 complex (1), while the nonradical-containing tetranuclear CoIII4 complex (2), with no paramagnetic centres, was a semiconductor and sensed NH3 efficiently at room temperature (25 °C).

5.
ACS Omega ; 4(1): 1292-1299, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459400

RESUMO

Multifunctional freestanding membranes are prepared by tuning the structure of ubiquitous soil components, viz. clay and humic acids. Cross-linking of exfoliated clay layers with purified humic acids not only conferred mechanical strength but also enhanced chemical robustness of the membranes. The percolated network of molecularly sized channels of the soil membranes exhibits characteristic nanofluidic phenomena. Electrical conductivity is induced to otherwise insulating soil membranes by heating in an inert atmosphere, without affecting their nanofluidic ionic conductivity. The soil membranes also provided a new platform to prepare and study mixed conducting materials. Strips of heated membranes are shown to exhibit excellent sensitivity toward NH3 gas under atmospheric conditions.

6.
ACS Appl Bio Mater ; 2(6): 2549-2556, 2019 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35030709

RESUMO

Nature produces a plethora of nanochannels to carry out highly complex biological tasks in a sophisticated manner. There have been several studies to understand the characteristics of these channels; however, efforts to apply them for technological advancements are still scarce. Here, we have demonstrated that the fluidic channels of biomaterials can be harvested as nanofluidic devices to produce energy from enzymatic chemical reactions. The bionanochannel-based nanofluidic devices exhibit various nanofluidic phenomena like surface-charged-governed ionic conductivity and development of the transmembrane potential. The mobility of ions in the hydrated bionanochannels are found to be higher than that of bulk water. The cation-selective nature of the biochannels was also exploited to harvest a continuous supply of power up to 74 mW m-2 for 3 h from the enzymatic decomposition of urea. The transmembrane potential across the biochannels was also explored for label-free electrical monitoring of the enzymatic reaction inside the biological medium. Electrical monitoring on the kinetics of urease at different reaction temperatures suggested that inside biological medium the reaction goes through a pathway of lower activation energy (31.1 kJ) than that in the bulk environment (34.1 kJ). Enzyme urease was found to be more sustainable in bionanochannels than in glass vials.

7.
ACS Appl Mater Interfaces ; 9(48): 42354-42365, 2017 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-29119779

RESUMO

Artificial bioinspired superhydrophobicity, which is generally developed through appropriate optimization of chemistry and hierarchical topography, is being recognized for its immense prospective applications related to environment and healthcare. Nevertheless, the weak interfacial interactions that are associated with the fabrication of such special interfaces often provide delicate biomimicked wettability, and the embedded antifouling property collapses on exposure to harsh and complex aqueous phases and also after regular physical deformations, including bending, creasing, etc. Eventually, such materials with potential antifouling property became less relevant for practical applications. Here, a facile, catalyst-free, and robust 1,4-conjugate addition reaction has been strategically exploited for appropriate covalent integration of modified graphene oxide to developing polymeric materials with (1) tunable mechanical properties and (2) durable antifouling property, which are capable of performing both in air and under oil. Furthermore, this approach provided a facile basis for (3) engineering a superhydrophobic monolith into arbitrary free-standing shapes and (4) decorating various flexible (metal, synthetic plastic, etc.) and rigid (glass, wood, etc.) substrates with thick and durable three-dimensional superhydrophobic coatings. The synthesized superhydrophobic monoliths and polymeric coatings with controlled mechanical properties are appropriate to withstand different physical insults, including twisting, creasing, and even physical erosion of the material, without compromising the embedded antiwetting property. The materials are also equally resistant to various harsh chemical environments, and the embedded antifouling property remained unperturbed even after continuous exposure to extremes of pH (pH 1 and pH 11), artificial sea water for a minimum of 30 days. These flexible and formable free-standing monoliths and stable polymeric coatings that are extremely water-repellent both in air and under oil, are of utmost importance owing to their suitability in practical circumstances and robust nature.

8.
Dalton Trans ; 46(26): 8664-8672, 2017 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-28650057

RESUMO

A simple, facile and one-pot route for preparing SnO2 nanoclusters embedded on a mesoporous Sn(iv) organophosphonate (MSnP) framework is described. Reaction of SnCl4·5H2O with a flexible tris-phosphonic acid, mesityl-1,3,5-tris(methylenephosphonic acid), in the presence of a surfactant under hydrothermal conditions produced the desired nanocomposite, SnO2@MSnP. Analytical, spectroscopic and microscopic studies establish that SnO2@MSnP composite is comprised of SnO2 nanoparticles of an average size of 5 nm evenly and abundantly dispersed over the MSnP framework. The mesoporous metal organophosphonate support significantly augments the catalytic efficacy and vapor sensitivity of SnO2 nanoparticles. The catalytic efficiency of SnO2@MSnP was tested for two acid-catalyzed reactions: deoximation reaction and esterification of fatty acids. SnO2@MSnP exhibits remarkable sensitivity towards ammonia and acetone vapors at near room temperature and under open atmospheric conditions. The present method represents an important step towards preparation of mesoporous metal organophosphonate supported metal oxide nanoclusters and hence offers easy access to functional metal oxide based nanocomposites.

9.
Adv Mater ; 29(24)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28418190

RESUMO

Layers of naturally occurring clay minerals are rearranged to prepare highly sensitive multiresponsive clay-clay bilayer membrane (CCBM). The CCBM introduced here responds to the minuscule changes in the surrounding environments including temperature, humidity, and presence of solvent vapors by morphing in specific manners. Strips cut from CCBM exhibit up to 588 N kg-1 force output when exposed to temperature fluctuations. Inheriting the natural stability of clay minerals, CCBM demonstrates extreme robustness, heating up to 500 °C, cooling with liquid N2 and exposure to corrosive chemical vapors did not deteriorate its bending performance. Mechanistic studies suggest that shape transformations of CCBM are driven by the unequal response of its components to external stimuli.

10.
ACS Cent Sci ; 2(11): 857-866, 2016 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-27924315

RESUMO

The current rectification displayed by solid-state p-n semiconductor diodes relies on the abundance of electrons and holes near the interface between the p-n junction. In analogy to this electronic device, we propose here the construction of a purely ionic liquid-state electric rectifying heterojunction displaying an excess of monovalent cations and anions near the interface between two immiscible solvents with different dielectric properties. This system does not need any physical membrane or material barrier to show preferential ion transfer but relies on the ionic solvation energy between the two immiscible solvents. We construct a simple device, based on an oil/water interface, displaying an asymmetric behavior of the electric current as a function of the polarity of an applied electric field. This device also exhibits a region of negative differential conductivity, analogous to that observed in brain and heart cells via voltage clamp techniques. Computer simulations and mean field theory calculations for a model of this system show that the application of an external electric field is able to control the bulk concentrations of the ionic species in the immiscible liquids in a manner that is asymmetric with respect to the polarity or direction of the applied electric field. These properties make possible to enhance or suppress selective ion transport at liquid-liquid interfaces with the application of an external electric field or electrostatic potential, mimicking the function of biological ion channels, thus creating opportunities for varied applications.

11.
Nat Commun ; 6: 7602, 2015 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-26165550

RESUMO

Exfoliated two-dimensional (2D) sheets can readily stack to form flexible, free-standing films with lamellar microstructure. The interlayer spaces in such lamellar films form a percolated network of molecularly sized, 2D nanochannels that could be used to regulate molecular transport. Here we report self-assembled clay-based 2D nanofluidic channels with surface charge-governed proton conductivity. Proton conductivity of these 2D channels exceeds that of acid solution for concentrations up to 0.1 M, and remains stable as the reservoir concentration is varied by orders of magnitude. Proton transport occurs through a Grotthuss mechanism, with activation energy and mobility of 0.19 eV and 1.2 × 10(-3) cm(2) V(-1) s(-1), respectively. Vermiculite nanochannels exhibit extraordinary thermal stability, maintaining their proton conduction functions even after annealing at 500 °C in air. The ease of constructing massive arrays of stable 2D nanochannels without lithography should prove useful to the study of confined ionic transport, and will enable new ionic device designs.

12.
Nat Chem ; 7(2): 166-70, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25615671

RESUMO

Graphene oxide (GO) films are known to be highly stable in water and this property has made their use in membrane applications in solution possible. However, this state of affairs is somewhat counterintuitive because GO sheets become negatively charged on hydration and the membrane should disintegrate owing to electrostatic repulsion. We have now discovered a long-overlooked reason behind this apparent contradiction. Our findings show that neat GO membranes do, indeed, readily disintegrate in water, but the films become stable if they are crosslinked by multivalent cationic metal contaminants. Such metal contaminants can be introduced unintentionally during the synthesis and processing of GO, most notably on filtration with anodized aluminium oxide filter discs that corrode to release significant amounts of aluminium ions. This finding has wide implications in interpreting the processing-structure-property relationships of GO and other lamellar membranes. We also discuss strategies to avoid and mitigate metal contamination and demonstrate that this effect can be exploited to synthesize new membrane materials.

13.
ACS Nano ; 8(1): 449-57, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24298909

RESUMO

Hydrothermal carbonization (HTC) of biomass such as glucose and cellulose typically produces micrometer-sized carbon spheres that are insulating. Adding a very small amount of Graphene oxide (GO) to glucose (e.g., 1:800 weight ratio) can significantly alter the morphology of its HTC product, resulting in more conductive carbon materials with higher degree of carbonization. At low mass loading level of GO, HTC treatment results in dispersed carbon platelets of tens of nanometers in thickness, while at high mass loading levels, free-standing carbon monoliths are obtained. Control experiments with other carbon materials such as graphite, carbon nanotubes, carbon black, and reduced GO show that only GO has significant effect in promoting HTC conversion, likely due to its good water processability, amphiphilicity, and two-dimensional structure that may help to template the initially carbonized materials. GO offers an additional advantage in that its graphene product can act as an in situ heating element to enable further carbonization of the HTC products very rapidly upon microwave irradiation. Similar effect of GO is also observed for the HTC treatment of cellulose.


Assuntos
Carbono/química , Grafite/química , Óxidos/química , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier , Termogravimetria
14.
J Am Chem Soc ; 134(40): 16528-31, 2012 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-22998077

RESUMO

Electrolytes confined in nanochannels with characteristic dimensions comparable to the Debye length show transport behaviors deviating from their bulk counterparts. Fabrication of nanofluidic devices typically relies on expensive lithography techniques or the use of sacrificial templates with sophisticated growth and processing steps. Here we demonstrate an alternative approach where unprecedentedly massive arrays of nanochannels are readily formed by restacking exfoliated sheets of layered materials, such as graphene oxide (GO). Nanochannels between GO sheets are successfully constructed as manifested by surface-charge-governed ion transport for electrolyte concentrations up to 50 mM. Nanofluidic devices based on reconstructed layer materials have distinct advantages such as low cost, facile fabrication, ease of scaling up to support high ionic currents, and flexibility. Given the rich chemical, physical, and mechanical properties of layered materials, they should offer many exciting new opportunities for studying and even manufacturing nanofluidic devices.

15.
ChemSusChem ; 4(11): 1662-70, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-22083870

RESUMO

The surface areas and uptake of CO(2) and CH(4) by four graphene samples are measured and compared with activated charcoal. The surface areas are in the range of 5-640 m(2) g(-1), whereas the CO(2) and CH(4) uptake values are in the range of 18-45 wt % (at 195 K, 0.1 MPa) and 0-2.8 wt % (at 273 K, 5 MPa), respectively. The CO(2) and CH(4) uptake values of the graphene samples vary linearly with the surface area. In contrast, graphene-like B(x)C(y)N(z) samples with compositions close to BC(2)N exhibit surface areas in the range of 1500-1990 m(2) g(-1) and CO(2) and CH(4) uptake values in the ranges 97-128 wt % (at 195 K, 0.1 MPa) and 7.5-17.3 wt %, respectively. The uptake of these gases varies exponentially with the surface area of the B(x)C(y)Z(n) samples, and the uptake of CH(4) varies proportionally with that of CO(2). The uptake of CO(2) for the best BC(2)N sample is 64 wt % at 298 K. The large uptake of both CO(2) and CH(4) gases by BC(2)N betters the performance of graphenes and activated charcoal. First-principles calculations show that the adsorption of CO(2) and CH(4) is more favored on BCN samples compared to graphene.


Assuntos
Compostos de Boro/química , Dióxido de Carbono/química , Grafite/química , Metano/química , Adsorção , Dióxido de Carbono/isolamento & purificação , Efeito Estufa , Metano/isolamento & purificação , Modelos Moleculares , Conformação Molecular , Temperatura
16.
ACS Nano ; 4(3): 1539-44, 2010 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-20128601

RESUMO

Enthused by the fascinating properties of graphene, we have prepared graphene analogues of BN by a chemical method with a control on the number of layers. The method involves the reaction of boric acid with urea, wherein the relative proportions of the two have been varied over a wide range. Synthesis with a high proportion of urea yields a product with a majority of 1-4 layers. The surface area of BN increases progressively with the decreasing number of layers, and the high surface area BN exhibits high CO(2) adsorption, but negligible H(2) adsorption. Few-layer BN has been solubilized by interaction with Lewis bases. We have used first-principles simulations to determine structure, phonon dispersion, and elastic properties of BN with planar honeycomb lattice-based n-layer forms. We find that the mechanical stability of BN with respect to out-of-plane deformation is quite different from that of graphene, as evident in the dispersion of their flexural modes. BN is softer than graphene and exhibits signatures of long-range ionic interactions in its optical phonons. Finally, structures with different stacking sequences of BN have comparable energies, suggesting relative abundance of slip faults, stacking faults, and structural inhomogeneities in multilayer BN.

17.
Chemistry ; 16(1): 149-57, 2010 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-19946909

RESUMO

A new analogue of graphene containing boron, carbon and nitrogen (BCN) has been obtained by the reaction of high-surface-area activated charcoal with a mixture of boric acid and urea at 900 degrees C. X-ray photoelectron spectroscopy and electron energy-loss spectroscopy reveal the composition to be close to BCN. The X-ray diffraction pattern, high-resolution electron microscopy images and Raman spectrum indicate the presence of graphite-type layers with low sheet-to-sheet registry. Atomic force microscopy reveals the sample to consist of two to three layers of BCN, as in a few-layer graphene. BCN exhibits more electrical resistivity than graphene, but weaker magnetic features. BCN exhibits a surface area of 2911 m(2) g(-1), which is the highest value known for a B(x)C(y)N(z) composition. It exhibits high propensity for adsorbing CO(2) ( approximately 100 wt %) at 195 K and a hydrogen uptake of 2.6 wt % at 77 K. A first-principles pseudopotential-based DFT study shows the stable structure to consist of BN(3) and NB(3) motifs. The calculations also suggest the strongest CO(2) adsorption to occur with a binding energy of 3.7 kJ mol(-1) compared with 2.0 kJ mol(-1) on graphene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...