Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Data Brief ; 53: 110227, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38435737

RESUMO

This paper shares an experimental dataset of lithium-ion battery parallel-connected modules. The campaign, conducted at the Stanford Energy Control Laboratory, employs a comprehensive full factorial Design of Experiment methodology on ladder-configured parallel strings. A total of 54 test conditions were investigated under various operating temperatures, cell-to-cell interconnection resistance, cell chemistry, and aging levels. The module-level testing procedure involved Constant Current Constant Voltage (CC-CV) charging and Constant Current (CC) discharge. Beyond monitoring total module current and voltage, Hall sensors and thermocouples were employed to measure the signals from each individual cell to quantify both current and temperature distribution within each tested module configuration. Additionally, the dataset contains cell characterization data for every cell (i.e. NCA Samsung INR21700-50E and NMC LG-Chem INR21700-M50T) used in the module-level experiments. This dataset provides valuable resources for developing battery physics-based, empirical, and data-driven models at single cell and module level. Ultimately, it contributes to advance our understanding of how cell-to-cell heterogeneity propagates within the module and how that affects the overall system performance.

2.
J Diabetes Sci Technol ; 2(4): 630-5, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19885239

RESUMO

BACKGROUND: Advancements in subcutaneous continuous glucose monitoring and subcutaneous insulin delivery are stimulating the development of a minimally invasive artificial pancreas that facilitates optimal glycemic regulation in diabetes. The key component of such a system is the blood glucose controller for which different design strategies have been investigated in the literature. In order to evaluate and compare the efficacy of the various algorithms, several performance indices have been proposed. METHODS: A new tool-control-variability grid analysis (CVGA)-for measuring the quality of closed-loop glucose control on a group of subjects is introduced. It is a method for visualization of the extreme glucose excursions caused by a control algorithm in a group of subjects, with each subject presented by one data point for any given observation period. A numeric assessment of the overall level of glucose regulation in the population is given by the summary outcome of the CVGA. RESULTS: It has been shown that CVGA has multiple uses: comparison of different patients over a given time period, of the same patient over different time periods, of different control laws, and of different tuning of the same controller on the same population. CONCLUSIONS: Control-variability grid analysis provides a summary of the quality of glycemic regulation for a population of subjects and is complementary to measures such as area under the curve or low/high blood glucose indices, which characterize a single glucose trajectory for a single subject.

3.
J Diabetes Sci Technol ; 1(3): 323-30, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-19885087

RESUMO

BACKGROUND: A simulation model of the glucose-insulin system in normal life conditions can be very useful in diabetes research, e.g., testing insulin infusion algorithms and decision support systems and assessing glucose sensor performance and patient and student training. A new meal simulation model has been proposed that incorporates state-of-the-art quantitative knowledge on glucose metabolism and its control by insulin at both organ/tissue and whole-body levels. This article presents the interactive simulation software GIM (glucose insulin model), which implements this model. METHODS: The model is implemented in MATLAB, version 7.0.1, and is designed with a windows interface that allows the user to easily simulate a 24-hour daily life of a normal, type 2, or type 1 diabetic subject. A Simulink version is also available. Three meals a day are considered. Both open- and closed-loop controls are available for simulating a type 1 diabetic subject. RESULTS: Software options are described in detail. Case studies are presented to illustrate the potential of the software, e.g., compare a normal subject vs an insulin-resistant subject or open-loop vs closed-loop insulin infusion in type 1 diabetes treatment. CONCLUSIONS: User-friendly software that implements a state-of-the-art physiological model of the glucose-insulin system during a meal has been presented. The GIM graphical interface makes its use extremely easy for investigators without specific expertise in modeling.

4.
J Diabetes Sci Technol ; 1(6): 804-12, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19885152

RESUMO

BACKGROUND: The development of artificial pancreas has received a new impulse from recent technological advancements in subcutaneous continuous glucose monitoring and subcutaneous insulin pump delivery systems. However, the availability of innovative sensors and actuators, although essential, does not guarantee optimal glycemic regulation. Closed-loop control of blood glucose levels still poses technological challenges to the automatic control expert, most notable of which are the inevitable time delays between glucose sensing and insulin actuation. METHODS: A new in silico model is exploited for both design and validation of a linear model predictive control (MPC) glucose control system. The starting point is a recently developed meal glucose-insulin model in health, which is modified to describe the metabolic dynamics of a person with type 1 diabetes mellitus. The population distribution of the model parameters originally obtained in healthy 204 patients is modified to describe diabetic patients. Individual models of virtual patients are extracted from this distribution. A discrete-time MPC is designed for all the virtual patients from a unique input-output-linearized approximation of the full model based on the average population values of the parameters. The in silico trial simulates 4 consecutive days, during which the patient receives breakfast, lunch, and dinner each day. RESULTS: Provided that the regulator undergoes some individual tuning, satisfactory results are obtained even if the control design relies solely on the average patient model. Only the weight on the glucose concentration error needs to be tuned in a quite straightforward and intuitive way. The ability of the MPC to take advantage of meal announcement information is demonstrated. Imperfect knowledge of the amount of ingested glucose causes only marginal deterioration of performance. In general, MPC results in better regulation than proportional integral derivative, limiting significantly the oscillation of glucose levels. CONCLUSIONS: The proposed in silico trial shows the potential of MPC for artificial pancreas design. The main features are a capability to consider meal announcement information, delay compensation, and simplicity of tuning and implementation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...