Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 11: 1173688, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091972

RESUMO

The specification of the forebrain relies on the precise regulation of WNT/ß-catenin signalling to support neuronal progenitor cell expansion, patterning, and morphogenesis. Imbalances in WNT signalling activity in the early neuroepithelium lead to congenital disorders, such as neural tube defects (NTDs). LDL receptor-related protein (LRP) family members, including the well-studied receptors LRP5 and LRP6, play critical roles in modulating WNT signalling capacity through tightly regulated interactions with their co-receptor Frizzled, WNT ligands, inhibitors and intracellular WNT pathway components. However, little is known about the function of LRP4 as a potential modulator of WNT signalling in the central nervous system. In this study, we investigated the role of LRP4 in the regulation of WNT signalling during early mouse forebrain development. Our results demonstrate that LRP4 can modulate LRP5- and LRP6-mediated WNT signalling in the developing forebrain prior to the onset of neurogenesis at embryonic stage 9.5 and is therefore essential for accurate neural tube morphogenesis. Specifically, LRP4 functions as a genetic modifier for impaired mitotic activity and forebrain hypoplasia, but not for NTDs in LRP6-deficient mutants. In vivo and in vitro data provide evidence that LRP4 is a key player in fine-tuning WNT signalling capacity and mitotic activity of mouse neuronal progenitors and of human retinal pigment epithelial (hTERT RPE-1) cells. Our data demonstrate the crucial roles of LRP4 and LRP6 in regulating WNT signalling and forebrain development and highlight the need to consider the interaction between different signalling pathways to understand the underlying mechanisms of disease. The findings have significant implications for our mechanistic understanding of how LRPs participate in controlling WNT signalling.

2.
Methods Mol Biol ; 2149: 111-124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32617932

RESUMO

The unicellular freshwater green alga Penium margaritaceum has become a novel and valuable model organism for elucidating cell wall dynamics in plants. We describe a rapid and simple means for isolating protoplasts using commercial enzymes in a mannitol-based buffer. Protoplasts can be cultured and cell wall recovery can be monitored in sequentially diluted mannitol-based medium. We also describe an optimized protocol to prepare highly pure, organelle-free nuclei fractions from protoplasts using sucrose gradients. This technology provides a new and effective tool in Penium biology that can be used for analysis of cell wall polymer deposition, organelle isolation and characterization, and molecular research including genetic transformation and somatic hybridization.


Assuntos
Clorófitas/metabolismo , Modelos Biológicos , Protoplastos/metabolismo , Núcleo Celular/metabolismo , Parede Celular/metabolismo , Células Cultivadas
3.
Methods Mol Biol ; 1563: 91-105, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28324604

RESUMO

The unicellular green alga, Penium margaritaceum, represents a novel and valuable model organism for elucidating cell wall dynamics in plants. This organism's cell wall contains several polymers that are highly similar to those found in the primary cell walls of land plants. Penium is easily grown in laboratory culture and is effectively manipulated in various experimental protocols including microplate assays and correlative microscopy. Most importantly, Penium can be live labeled with cell wall-specific antibodies or other probes and returned to culture where specific cell wall developmental events can be monitored. Additionally, live cells can be rapidly cryo-fixed and cell wall surface microarchitecture can be observed with variable pressure scanning electron microscopy. Here, we describe the methodology for maintaining Penium for experimental cell wall enzyme studies.


Assuntos
Parede Celular , Clorófitas/metabolismo , Clorófitas/ultraestrutura , Microscopia Eletrônica de Varredura , Imagem Molecular/métodos , Células Vegetais , Polímeros , Parede Celular/metabolismo , Parede Celular/ultraestrutura , Imunofluorescência , Células Vegetais/metabolismo , Polímeros/metabolismo
4.
Protoplasma ; 254(2): 997-1016, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27562783

RESUMO

LAMP is a cell wall-directed monoclonal antibody (mAb) that recognizes a ß-(1,3)-glucan epitope. It has primarily been used in the immunolocalization of callose in vascular plant cell wall research. It was generated against a brown seaweed storage polysaccharide, laminarin, although it has not often been applied in algal research. We conducted in vitro (glycome profiling of cell wall extracts) and in situ (immunolabeling of sections) studies on the brown seaweeds Fucus vesiculosus (Fucales) and Laminaria digitata (Laminariales). Although glycome profiling did not give a positive signal with the LAMP mAb, this antibody clearly detected the presence of the ß-(1,3)-glucan in situ, showing that this epitope is a constituent of these brown algal cell walls. In F. vesiculosus, the ß-(1,3)-glucan epitope was present throughout the cell walls in all thallus parts; in L. digitata, the epitope was restricted to the sieve plates of the conductive elements. The sieve plate walls also stained with aniline blue, a fluorochrome used as a probe for callose. Enzymatic digestion with an endo-ß-(1,3)-glucanase removed the ability of the LAMP mAb to label the cell walls. Thus, ß-(1,3)-glucans are structural polysaccharides of F. vesiculosus cell walls and are integral components of the sieve plates in these brown seaweeds, reminiscent of plant callose.


Assuntos
Parede Celular/química , Phaeophyceae/metabolismo , Alga Marinha/metabolismo , beta-Glucanas/metabolismo , Anticorpos Monoclonais/metabolismo , Glicômica , Phaeophyceae/ultraestrutura , Alga Marinha/ultraestrutura , Coloração e Rotulagem
5.
Planta ; 243(2): 337-54, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26411728

RESUMO

MAIN CONCLUSION: Land plant cell wall glycan epitopes are present in Fucus vesiculosus. RG-I/AG mAbs recognize distinct glycan epitopes in structurally different galactans, and 3-linked glucans are also present in the cell walls. Cell wall-directed monoclonal antibodies (mAbs) have given increased knowledge of fundamental land plant processes but are not extensively used to study seaweeds. We profiled the brown seaweed Fucus vesiculosus glycome employing 155 mAbs that recognize predominantly vascular plant cell wall glycan components. The resulting profile was used to inform in situ labeling studies. Several of the mAbs recognized and bound to epitopes present in different thallus parts of Fucus vesiculosus. Antibodies recognizing arabinogalactan epitopes were divided into four groups based on their immunolocalization patterns. Group 1 bound to the stipe, blade, and receptacles. Group 2 bound to the antheridia, oogonia and paraphyses. Group 3 recognized antheridia cell walls and Group 4 localized on the antheridia inner wall and oogonia mesochite. This study reveals that epitopes present in vascular plant cell walls are also present in brown seaweeds. Furthermore, the diverse in situ localization patterns of the RG-I/AG clade mAbs suggest that these mAbs likely detect distinct epitopes present in structurally different galactans. In addition, 3-linked glucans were also detected throughout the cell walls of the algal tissues, using the ß-glucan-directed LAMP mAb. Our results give insights into cell wall evolution, and diversify the available tools for the study of brown seaweed cell walls.


Assuntos
Antígenos/análise , Parede Celular/metabolismo , Fucus/metabolismo , Ensaio de Imunoadsorção Enzimática , Glicômica , Imuno-Histoquímica , Plantas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...