Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Pharm Res ; 35(8): 158, 2018 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-29916053

RESUMO

PURPOSE: The overall purpose of this study was to understand the impact of different biorelevant media types on solubility and crystallization from supersaturated solutions of model compounds (atazanavir, ritonavir, tacrolimus and cilnidipine). The first aim was to understand the influence of the lecithin content in FaSSIF. As the human intestinal fluids (HIFs) contain a variety of bile salts in addition to sodium taurocholate (STC), the second aim was to understand the role of these bile salts (in the presence of lecithin) on solubility and crystallization from supersaturated solutions, METHODS: To study the impact of lecithin, media with 3 mM STC concentration but varying lecithin concentration were prepared. To test the impact of different bile salts, a new biorelevant medium (Composite-SIF) with a composition simulating that found in the fasted HIF was prepared. The crystalline and amorphous solubility was determined in these media. Diffusive flux measurements were performed to determine the true supersaturation ratio at the amorphous solubility of the compounds in various media. Nucleation induction times from supersaturated solutions were measured at an initial concentration equal to the amorphous solubility (equivalent supersaturation) of the compound in the given medium. RESULTS: It was observed that, with an increase in lecithin content at constant STC concentration (3 mM), the amorphous solubility of atazanavir increased and crystallization was accelerated. However, the crystalline solubility remained fairly constant. Solubility values were higher in FaSSIF compared to Composite-SIF. Longer nucleation induction times were observed for atazanavir, ritonavir and tacrolimus in Composite-SIF compared to FaSSIF at equivalent supersaturation ratios. CONCLUSIONS: This study shows that variations in the composition of SIF can lead to differences in the solubility and crystallization tendency of drug molecules, both of which are critical when evaluating supersaturating systems.


Assuntos
Secreções Intestinais/química , Lecitinas/química , Preparações Farmacêuticas/química , Algoritmos , Sulfato de Atazanavir/química , Bloqueadores dos Canais de Cálcio/química , Cristalização , Di-Hidropiridinas/química , Inibidores da Protease de HIV/química , Humanos , Imunossupressores/química , Ritonavir/química , Solubilidade , Soluções/química , Tacrolimo/química
2.
J Pharm Sci ; 106(8): 1998-2008, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28431965

RESUMO

It has been observed that certain amorphous solid dispersions (ASDs), upon dissolution, generate drug-rich amorphous nanodroplets. These nanodroplets, present as a dispersed phase, can potentially enhance oral bioavailability of poorly soluble drugs by serving as a drug reservoir that efficiently feeds the continuous aqueous solution phase following absorption of drug. The purpose of this study is to probe the formation mechanism of the nanodroplets. The model system studied was nifedipine (NFD) formulated as an ASD with hydroxypropyl methylcellulose E5 Premium LV or polyvinylpyrrolidone/vinyl acetate. Dissolution of ASDs prepared with proteated nifedipine (H-NFD) was carried out in a medium saturated with deuterated nifedipine (D-NFD) at the amorphous solubility. Upon dissolution, the H/D composition of NFD aqueous solution was determined using nuclear magnetic resonance spectroscopy. The results suggested that isotopic scrambling (equilibrium in the distribution of deuterated and proteated form of the drug) had occurred. Thus, as the H-NFD was brought into the aqueous solution via ASD dissolution, the drug concentration in solution exceeded the amorphous solubility. Subsequent precipitation of the drug, a process which does not differentiate H-NFD from D-NFD, generated NFD nanodroplets and resulted in redistribution of the isotopes. Thus, nanodroplets of NFD are formed due to dissolution of these homogenous ASDs followed by precipitation of the drug from aqueous solutions.


Assuntos
Bloqueadores dos Canais de Cálcio/química , Derivados da Hipromelose/química , Nifedipino/química , Povidona/química , Compostos de Vinila/química , Cristalização , Composição de Medicamentos , Excipientes/química , Espectroscopia de Ressonância Magnética , Nanoestruturas/química , Solubilidade
3.
Pharm Res ; 34(6): 1276-1295, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28352994

RESUMO

PURPOSE: The goals of this study were to determine: 1) the impact of surfactants on the "amorphous solubility"; 2) the thermodynamic supersaturation in the presence of surfactant micelles; 3) the mechanism of solute solubilization by surfactant micelles in supersaturated solutions. METHODS: The crystalline and amorphous solubility of atazanavir was determined in the presence of varying concentrations of micellar sodium dodecyl sulfate (SDS). Flux measurements, using a side-by-side diffusion cell, were employed to determine the free and micellar-bound drug concentrations. The solubilization mechanism as a function of atazanavir concentration was probed using fluorescence spectroscopy. Pulsed gradient spin-echo proton nuclear magnetic resonance (PGSE-NMR) spectroscopy was used to determine the change in micelle size with a change in drug concentration. RESULTS: Changes in the micelle/water partition coefficient, K m/w , as a function of atazanavir concentration led to erroneous estimates of the supersaturation when using concentration ratios. In contrast, determining the free drug concentration using flux measurements enabled improved determination of the thermodynamic supersaturation in the presence of micelles. Fluorescence spectroscopic studies suggested that K m/w changed based on the location of atazanavir solubilization which in turn changed with concentration. Thus, at a concentration equivalent to the crystalline solubility, atazanavir is solubilized by adsorption at the micelle corona, whereas in highly supersaturated solutions it is also solubilized in the micellar core. This difference in solubilization mechanism can lead to a breakdown in the prediction of amorphous solubility in the presence of SDS as well as challenges with determining supersaturation. PGSE-NMR suggested that the size of the SDS micelle is not impacted at the crystalline solubility of the drug but increases when the drug concentration reaches the amorphous solubility, in agreement with the proposed changes in solubilization mechanism. CONCLUSIONS: Micellar solubilization of atazanavir is complex, with the solubilization mechanism changing with differences in the degree of (super)saturation. This can result in erroneous predictions of the amorphous solubility and thermodynamic supersaturation in the presence of solubilizing additives. This in turn hinders understanding of the driving force for phase transformations and membrane transport, which is essential to better understand supersaturating dosage forms.


Assuntos
Sulfato de Atazanavir/química , Nanopartículas/química , Dodecilsulfato de Sódio/química , Tensoativos/química , Cinética , Micelas , Tamanho da Partícula , Solubilidade , Soluções , Espectrometria de Fluorescência , Propriedades de Superfície , Termodinâmica
4.
Mol Pharm ; 13(6): 2059-69, 2016 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-27138900

RESUMO

Recent studies on aqueous supersaturated lipophilic drug solutions prepared by methods including antisolvent addition, pH swing, or dissolution of amorphous solid dispersions (ASDs) have demonstrated that when crystallization is slow, these systems undergo liquid-liquid phase separation (LLPS) when the concentration of the drug in the medium exceeds its amorphous solubility. Following LLPS, a metastable equilibrium is formed where the concentration of drug in the continuous phase corresponds to the amorphous solubility while the dispersed phase is composed of a nanosized drug-rich phase. It has been reasoned that the drug-rich phase may act as a reservoir, enabling the rate of passive transport of the drug across a membrane to be maintained at the maximum value for an extended period of time. Herein, using clotrimazole as a model drug, and a flow-through diffusion cell, the reservoir effect is demonstrated. Supersaturated clotrimazole solutions at concentrations below the amorphous solubility show a linear relationship between the maximum flux and the initial concentration. Once the concentration exceeds the amorphous solubility, the maximum flux achieved reaches a plateau. However, the duration for which the high flux persists was found to be highly dependent on the number of drug-rich nanodroplets present in the donor compartment. Macroscopic amorphous particles of clotrimazole did not lead to the same reservoir effect observed with the nanodroplets formed through the process of LLPS. A first-principles mathematical model was developed which was able to fit the experimental receiver concentration-time profiles for concentration regimes both below and above amorphous solubility, providing support for the contention that the nanodroplet phase does not directly diffuse across the membrane but, instead, rapidly replenishes the drug in the aqueous phase that has been removed by transport across the membrane. This study provides important insight into the properties of supersaturated solutions and how these might in turn impact oral absorption through effects on passive membrane transport rates.


Assuntos
Preparações de Ação Retardada/química , Membranas/metabolismo , Preparações Farmacêuticas/química , Transporte Biológico/fisiologia , Química Farmacêutica/métodos , Cristalização/métodos , Difusão , Nanopartículas/química , Solubilidade , Soluções/química , Água/química
5.
Pharm Res ; 32(11): 3660-73, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26123681

RESUMO

PURPOSE: Highly supersaturated aqueous solutions of poorly soluble compounds can undergo liquid-liquid phase separation (LLPS) when the concentration exceeds the "amorphous solubility". This phenomenon has been widely observed during high throughput screening of new molecular entities as well as during the dissolution of amorphous solid dispersions. In this study, we have evaluated the use of environment-sensitive fluorescence probes to investigate the formation and properties of the non-crystalline drug-rich aggregates formed in aqueous solutions as a result of LLPS. METHODS: Six different environment-sensitive fluorophores were employed to study LLPS in highly supersaturated solutions of several model compounds, all dihydropyridine derivatives. RESULTS: Each fluoroprobe exhibited a large hypsochromic shift with decreasing environment polarity. Upon drug aggregate formation, the probes partitioned into the drug-rich phase and exhibited changes in emission wavelength and intensity consistent with sensing a lower polarity environment. The LLPS onset concentrations determined using the fluorescence measurements were in good agreement with light scattering measurements as well as theoretically estimated amorphous solubility values. CONCLUSIONS: Environment-sensitive fluorescence probes are useful to help understand the phase behavior of highly supersaturated aqueous solutions, which in turn is important in the context of developing enabling formulations for poorly soluble compounds.


Assuntos
Química Farmacêutica/métodos , Di-Hidropiridinas/química , Corantes Fluorescentes/química , Preparações Farmacêuticas/química , Soluções Farmacêuticas/química , Água/química , Cristalização , Ensaios de Triagem em Larga Escala , Estrutura Molecular , Transição de Fase , Solubilidade
6.
Pharm Res ; 32(10): 3350-64, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26017301

RESUMO

PURPOSE: Many enabling formulations give rise to supersaturated solutions wherein the solute possesses higher thermodynamic activity gradients than the solute in a saturated solution. Since flux across a membrane is driven by solute activity rather than concentration, understanding how solute thermodynamic activity varies with solution composition, particularly in the presence of solubilizing additives, is important in the context of passive absorption. METHODS: In this study, a side-by-side diffusion cell was used to evaluate solute flux for solutions of nifedipine and felodipine in the absence and presence of different solubilizing additives at various solute concentrations. RESULTS: At a given solute concentration above the equilibrium solubility, it was observed that the solubilizing additives could reduce the membrane flux, indicating that the extent of supersaturation can be reduced. However, the flux could be increased back to the same maximum value (which was determined by the concentration where liquid-liquid phase separation (LLPS) occurred) by increasing the total solute concentration. Qualitatively, the shape of the curves of solute flux through membrane as a function of total solute concentration is the same in the absence and presence of solubilizing additives. Quantitatively, however, LLPS occurs at higher solute concentrations in the presence of solubilizing additives. Moreover, the ratios of the LLPS onset concentration and equilibrium solubility vary significantly in the absence and presence of additives. CONCLUSIONS: These findings clearly point out the flaws in using solute concentration in estimating solute activity or supersaturation, and reaffirm the use of flux measurements to understand supersaturated systems. Clear differentiation between solubilization and supersaturation, as well as thorough understanding of their respective impacts on membrane transport kinetics is important for the rational design of enabling formulations for poorly soluble compounds.


Assuntos
Transporte Biológico/efeitos dos fármacos , Soluções Farmacêuticas/química , Química Farmacêutica/métodos , Difusão , Felodipino/química , Absorção Intestinal/efeitos dos fármacos , Cinética , Nifedipino/química , Solubilidade
7.
J Pharm Sci ; 104(6): 1981-1992, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25808078

RESUMO

Amorphous materials are high-energy solids that can potentially enhance the bioavailability of poorly soluble compounds. A major impediment to their widespread use as a formulation platform is the tendency of amorphous materials to crystallize. The aim of this study was to evaluate the relative crystallization tendency of six structural analogues belonging to the dihydropyridine class, in an aqueous environment in the absence and presence of polymers, using wide-angle X-ray scattering synchrotron radiation and polarized light microscopy. The crystallization behavior of precipitates generated from supersaturated solutions of the active pharmaceutical ingredients was found to be highly variable ranging from immediate to several hours in the absence of polymers. Polymers with intermediate hydrophilicity/hydrophobicity were found to substantially delay crystallization, whereas strongly hydrophilic or hydrophobic polymers were largely ineffective. Nuclear magnetic resonance spectroscopy experiments supported the supposition that polymers need to have affinity for both the drug-rich precipitate and the aqueous phase in order to be effective crystallization inhibitors. This study highlights the variability in the crystallization tendency of different compounds and provides insight into the mechanism of inhibition by polymeric additives.


Assuntos
Bloqueadores dos Canais de Cálcio/química , Di-Hidropiridinas/química , Água/química , Precipitação Química , Cristalização , Interações Hidrofóbicas e Hidrofílicas , Polímeros/química , Solubilidade , Soluções/química , Síncrotrons , Difração de Raios X
8.
Mol Pharm ; 11(10): 3565-76, 2014 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-25185035

RESUMO

The commercial and clinical success of amorphous solid dispersions (ASD) in overcoming the low bioavailability of poorly soluble molecules has generated momentum among pharmaceutical scientists to advance the fundamental understanding of these complex systems. A major limitation of these formulations stems from the propensity of amorphous solids to crystallize upon exposure to aqueous media. This study was specifically focused on developing analytical techniques to evaluate the impact of polymers on the crystallization behavior during dissolution, which is critical in designing effective amorphous formulations. In the study, the crystallization and polymorphic conversions of a model compound, nifedipine, were explored in the absence and presence of polyvinylpyrrolidone (PVP), hydroxypropylmethyl cellulose (HPMC), and HPMC-acetate succinate (HPMC-AS). A combination of analytical approaches including Raman spectroscopy, polarized light microscopy, and chemometric techniques such as multivariate curve resolution (MCR) were used to evaluate the kinetics of crystallization and polymorphic transitions as well as to identify the primary route of crystallization, i.e., whether crystallization took place in the dissolving solid matrix or from the supersaturated solutions generated during dissolution. Pure amorphous nifedipine, when exposed to aqueous media, was found to crystallize rapidly from the amorphous matrix, even when polymers were present in the dissolution medium. Matrix crystallization was avoided when amorphous solid dispersions were prepared, however, crystallization from the solution phase was rapid. MCR was found to be an excellent data processing technique to deconvolute the complex phase transition behavior of nifedipine.


Assuntos
Nifedipino/química , Polímeros/química , Cristalização , Derivados da Hipromelose/química , Cinética , Transição de Fase , Povidona/análogos & derivados , Povidona/química , Solubilidade , Análise Espectral Raman
9.
J Pharm Sci ; 103(9): 2736-2748, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24382592

RESUMO

Amorphous solid dispersions (ASDs) give rise to supersaturated solutions (solution concentration greater than equilibrium crystalline solubility). We have recently found that supersaturating dosage forms can exhibit the phenomenon of liquid-liquid phase separation (LLPS). Thus, the high supersaturation generated by dissolving ASDs can lead to a two-phase system wherein one phase is an initially nanodimensioned and drug-rich phase and the other is a drug-lean continuous aqueous phase. Herein, the membrane transport of supersaturated solutions, at concentrations above and below the LLPS concentration has been evaluated using a side-by-side diffusion cell. Measurements of solution concentration with time in the receiver cell yield the flux, which reflects the solute thermodynamic activity in the donor cell. As the nominal concentration of solute in the donor cell increases, a linear increase in flux was observed up to the concentration where LLPS occurred. Thereafter, the flux remained essentially constant. Both nifedipine and felodipine solutions exhibit such behavior as long as crystallization is absent. This suggests that there is an upper limit in passive membrane transport that is dictated by the LLPS concentration. These results have several important implications for drug delivery, especially for poorly soluble compounds requiring enabling formulation technologies.


Assuntos
Membranas/metabolismo , Preparações Farmacêuticas/química , Soluções Farmacêuticas/química , Água/química , Transporte Biológico/fisiologia , Química Farmacêutica/métodos , Cristalização/métodos , Difusão , Sistemas de Liberação de Medicamentos/métodos , Felodipino/química , Nifedipino/química , Solubilidade , Termodinâmica
10.
PLoS One ; 7(6): e38594, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719904

RESUMO

Fluorescent protein (FP) insertions have often been used to localize primary structure elements in mid-resolution 3D cryo electron microscopic (EM) maps of large protein complexes. However, little is known as to the precise spatial relationship between the location of the fused FP and its insertion site within a larger protein. To gain insights into these structural considerations, Förster resonance energy transfer (FRET) measurements were used to localize green fluorescent protein (GFP) insertions within the ryanodine receptor type 1 (RyR1), a large intracellular Ca(2+) release channel that plays a key role in skeletal muscle excitation contraction coupling. A series of full-length His-tagged GFP-RyR1 fusion constructs were created, expressed in human embryonic kidney (HEK)-293T cells and then complexed with Cy3NTA, a His-tag specific FRET acceptor. FRET efficiency values measured from each GFP donor to Cy3NTA bound to each His tag acceptor site were converted into intermolecular distances and the positions of each inserted GFP were then triangulated relative to a previously published X-ray crystal structure of a 559 amino acid RyR1 fragment. We observed that the chromophoric centers of fluorescent proteins inserted into RyR1 can be located as far as 45 Å from their insertion sites and that the fused proteins can also be located in internal cavities within RyR1. These findings should prove useful in interpreting structural results obtained in cryo EM maps using fusions of small fluorescent proteins. More accurate point-to-point distance information may be obtained using complementary orthogonal labeling systems that rely on fluorescent probes that bind directly to amino acid side chains.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Proteínas de Fluorescência Verde/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Calibragem , Microscopia Crioeletrônica , DNA Complementar , Células HEK293 , Humanos , Modelos Moleculares , Canal de Liberação de Cálcio do Receptor de Rianodina/química , Canal de Liberação de Cálcio do Receptor de Rianodina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...