Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Vet Res ; 55(1): 76, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867337

RESUMO

Bovine mastitis remains a major disease in cattle world-wide. In the mammary gland, mammary epithelial cells (MEC) are sentinels equipped with receptors allowing them to detect and respond to the invasion by bacterial pathogens, in particular Escherichia coli. Lipopolysaccharide (LPS) is the major E. coli motif recognized by MEC through its interaction with the TLR4 receptor and the CD14 co-receptor. Previous studies have highlighted the role of soluble CD14 (sCD14) in the efficient recognition of LPS molecules possessing a full-length O-antigen (LPSS). We demonstrate here that MEC are able to secrete CD14 and are likely to contribute to the presence of sCD14 in milk. We then investigated how sCD14 modulates and is required for the response of MEC to LPSS. This study highlights the key role of sCD14 for the full activation of the Myd88-independent pathway by LPSS. We also identified several lncRNA that are activated in MEC in response to LPS, including one lncRNA showing homologies with the mir-99a-let-7c gene (MIR99AHG). Altogether, our results show that a full response to LPS by mammary epithelial cells requires sCD14 and provide detailed information on how milk sCD14 can contribute to an efficient recognition of LPS from coliform pathogens.


Assuntos
Células Epiteliais , Receptores de Lipopolissacarídeos , Lipopolissacarídeos , Glândulas Mamárias Animais , Animais , Receptores de Lipopolissacarídeos/metabolismo , Receptores de Lipopolissacarídeos/genética , Bovinos , Células Epiteliais/metabolismo , Lipopolissacarídeos/farmacologia , Feminino , Glândulas Mamárias Animais/metabolismo , Mastite Bovina/microbiologia , Mastite Bovina/imunologia , Mastite Bovina/metabolismo , Leite
2.
J Anim Sci Biotechnol ; 14(1): 100, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37420291

RESUMO

BACKGROUND: Mammary gland (MG) infections (mastitis) are frequent diseases of dairy cows that affect milk quality, animal welfare and farming profitability. These infections are commonly associated with the bacteria Escherichia coli and Staphylococcus aureus. Different in vitro models have been used to investigate the early response of the MG to bacteria, but the role of the teat in mastitis pathogenesis has received less attention. In this study, we used punch-excised teat tissue as an ex vivo model to study the immune mechanisms that arise early during infection when bacteria have entered the MG. RESULTS: Cytotoxicity and microscopic analyses showed that bovine teat sinus explants have their morphology and viability preserved after 24 h of culture and respond to ex vivo stimulation with TLR-agonists and bacteria. LPS and E. coli trigger stronger inflammatory response in teat when compared to LTA and S. aureus, leading to a higher production of IL-6 and IL-8, as well as to an up-regulation of proinflammatory genes. We also demonstrated that our ex vivo model can be applied to frozen-stored explants. CONCLUSIONS: In compliance with the 3Rs principle (replacement, reduction and refinement) in animal experimentation, ex vivo explant analyses proved to be a simple and affordable approach to study MG immune response to infection. This model, which better reproduces organ complexity than epithelial cell cultures or tissue slices, lends itself particularly well to studying the early phases of the MG immune response to infection.

3.
J Reprod Immunol ; 156: 103826, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36746006

RESUMO

T-lymphocytes are key mediators of adaptive cellular immunity and knowledge about distinct subsets of these cells in healthy and infected mammary gland secretions remains limited. In this study, we used a multiplex cytometry panel to show that staphylococcal mastitis causes the activation of CD4+, CD8+ and γδ T-cells found in bovine milk. We also highlight remarkable differences in the proportions of naïve and memory T-cells subsets found in blood and milk. These observations will contribute to a better understanding of cell-mediated immune mechanisms in the udder and to the development of new therapeutic and preventive strategies targeting mastitis.


Assuntos
Mastite Bovina , Leite , Humanos , Feminino , Animais , Bovinos , Staphylococcus aureus , Subpopulações de Linfócitos T , Diferenciação Celular , Glândulas Mamárias Animais
4.
Front Immunol ; 13: 1031785, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36341445

RESUMO

The epithelium of the mammary gland (MG) fulfills three major functions: nutrition of progeny, transfer of immunity from mother to newborn, and its own defense against infection. The defense function of the epithelium requires the cooperation of mammary epithelial cells (MECs) with intraepithelial leucocytes, macrophages, DCs, and resident lymphocytes. The MG is characterized by the secretion of a large amount of a nutrient liquid in which certain bacteria can proliferate and reach a considerable bacterial load, which has conditioned how the udder reacts against bacterial invasions. This review presents how the mammary epithelium perceives bacteria, and how it responds to the main bacterial genera associated with mastitis. MECs are able to detect the presence of actively multiplying bacteria in the lumen of the gland: they express pattern recognition receptors (PRRs) that recognize microbe-associated molecular patterns (MAMPs) released by the growing bacteria. Interactions with intraepithelial leucocytes fine-tune MECs responses. Following the onset of inflammation, new interactions are established with lymphocytes and neutrophils recruited from the blood. The mammary epithelium also identifies and responds to antigens, which supposes an antigen-presenting capacity. Its responses can be manipulated with drugs, plant extracts, probiotics, and immune modifiers, in order to increase its defense capacities or reduce the damage related to inflammation. Numerous studies have established that the mammary epithelium is a genuine effector of both innate and adaptive immunity. However, knowledge gaps remain and newly available tools offer the prospect of exciting research to unravel and exploit the multiple capacities of this particular epithelium.


Assuntos
Glândulas Mamárias Animais , Mastite Bovina , Humanos , Feminino , Animais , Recém-Nascido , Bovinos , Epitélio , Ruminantes , Inflamação
5.
Front Vet Sci ; 9: 854890, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464360

RESUMO

Mastitis is one of the greatest issues for the global dairy industry and controlling these infections by vaccination is a long-sought ambition that has remained unfulfilled so far. In fact, gaps in knowledge of cell-mediated immunity in the mammary gland (MG) have hampered progress in the rational design of immunization strategies targeting this organ, as current mastitis vaccines are unable to elicit a strong protective immunity. The objectives of this article are, from a comprehensive and critical review of available literature, to identify what characterizes adaptive immunity in the MG of ruminants, and to derive from this analysis research directions for the design of an optimal vaccination strategy. A peculiarity of the MG of ruminants is that it does not belong to the common mucosal immune system that links the gut immune system to the MG of rodents, swine or humans. Indeed, the MG of ruminants is not seeded by lymphocytes educated in mucosal epithelia of the digestive or respiratory tracts, because the mammary tissue does not express the vascular addressins and chemokines that would allow the homing of memory T cells. However, it is possible to elicit an adaptive immune response in the MG of ruminants by local immunization because the mammary tissue is provided with antigen-presenting cells and is linked to systemic mechanisms. The optimal immune response is obtained by luminal exposure to antigens in a non-lactating MG. The mammary gland can be sensitized to antigens so that a local recall elicits neutrophilic inflammation and enhanced defenses locally, resulting from the activation of resident memory lymphocytes producing IFN-γ and/or IL-17 in the mammary tissue. The rational exploitation of this immunity by vaccination will need a better understanding of MG cell-mediated immunity. The phenotypic and functional characterization of mammary antigen-presenting cells and memory T cells are amongst research priorities. Based on current knowledge, rekindling research on the immune cells that populate the healthy, infected, or immunized MG appears to be a most promising approach to designing efficacious mastitis vaccines.

6.
Vaccines (Basel) ; 10(2)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35214754

RESUMO

Mastitis is a major problem in dairy farming. Vaccine prevention of mammary bacterial infections is of particular interest in helping to deal with this issue, all the more so as antibacterial drug inputs in dairy farms must be reduced. Unfortunately, the effectiveness of current vaccines is not satisfactory. In this review, we examine the possible reasons for the current shortcomings of mastitis vaccines. Some reasons stem from the peculiarities of the mammary gland immunobiology, others from the pathogens adapted to the mammary gland niche. Infection does not induce sterilizing protection, and recurrence is common. Efficacious vaccines will have to elicit immune mechanisms different from and more effective than those induced by infection. We propose focusing our research on a few points pertaining to either the current immune knowledge or vaccinology approaches to get out of the current deadlock. A possible solution is to focus on the contribution of cell-mediated immunity to udder protection based on the interactions of T cells with the mammary epithelium. On the vaccinology side, studies on the orientation of the immune response by adjuvants, the route of vaccine administration and the delivery systems are among the keys to success.

7.
J Dairy Sci ; 104(10): 10427-10448, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34218921

RESUMO

Infections of the mammary gland remain a frequent disease of dairy ruminants that negatively affect animal welfare, milk quality, farmer serenity, and farming profitability and cause an increase in use of antimicrobials. There is a need for efficacious vaccines to alleviate the burden of mastitis in dairy farming, but this need has not been satisfactorily fulfilled despite decades of research. A careful appraisal of past and current research on mastitis vaccines reveals the peculiarities but also the commonalities among mammary gland infections associated with the major mastitis pathogens Escherichia coli, Staphylococcus aureus, Streptococcus uberis, Streptococcus agalactiae, or Streptococcus dysgalactiae. A major pitfall is that the immune mechanisms of effective protection have not been fully identified. Until now, vaccine development has been directed toward the generation of antibodies. In this review, we drew up an inventory of the main approaches used to design vaccines that aim at the major pathogens for the mammary gland, and we critically appraised the current and tentative vaccines. In particular, we sought to relate efficacy to vaccine-induced defense mechanisms to shed light on some possible reasons for current vaccine shortcomings. Based on the lessons learned from past attempts and the recent results of current research, the design of effective vaccines may take a new turn in the years to come.


Assuntos
Doenças dos Bovinos , Mastite Bovina , Mastite , Infecções Estreptocócicas , Vacinas , Animais , Bovinos , Feminino , Glândulas Mamárias Animais , Mastite/veterinária , Mastite Bovina/prevenção & controle , Infecções Estreptocócicas/prevenção & controle , Infecções Estreptocócicas/veterinária , Streptococcus
9.
Front Immunol ; 12: 625244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717136

RESUMO

Neutrophils that reside in the bone marrow are swiftly recruited from circulating blood to fight infections. For a long time, these first line defenders were considered as microbe killers. However their role is far more complex as cross talk with T cells or dendritic cells have been described for human or mouse neutrophils. In cattle, these new roles are not documented yet. We identified a new subset of regulatory neutrophils that is present in the mouse bone marrow or circulate in cattle blood under steady state conditions. These regulatory neutrophils that display MHC-II on the surface are morphologically indistinguishable from classical MHC-IIneg neutrophils. However MHC-IIpos and MHC-IIneg neutrophils display distinct transcriptomic profiles. While MHC-IIneg and MHC-IIpos neutrophils display similar bacterial phagocytosis or killing activity, MHC-IIpos only are able to suppress T cell proliferation under contact-dependent mechanisms. Regulatory neutrophils are highly enriched in lymphoid organs as compared to their MHC-IIneg counterparts and in the mouse they express PDL-1, an immune checkpoint involved in T-cell blockade. Our results emphasize neutrophils as true partners of the adaptive immune response, including in domestic species. They open the way for discovery of new biomarkers and therapeutic interventions to better control cattle diseases.


Assuntos
Antígenos de Histocompatibilidade Classe II/imunologia , Neutrófilos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Bovinos , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fagocitose
11.
mSphere ; 6(1)2021 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-33504665

RESUMO

Escherichia coli is the leading cause of severe mastitis in dairy farms. As E. coli mastitis is refractory to the hygienic control measures adapted to contagious mastitis, efficient vaccines are in demand. Existing mastitis vaccines, based on the use of killed rough E. coli J5 as the antigen, aim at inducing phagocytosis by neutrophils. We assessed the binding of J5-induced antibodies to isogenic rough and smooth strains along with a panel of mastitis-associated E. coli Analysis by enzyme-linked immunosorbent assay revealed that antibodies to OmpA or killed J5 bind readily to rough E. coli but poorly to smooth strains. Flow cytometry analysis indicated that immunization with J5 induced antibodies that cross-reacted with rough E. coli strains but with only a small subpopulation of smooth strains. We identified type 1 fimbriae as the target of most antibodies cross-reacting with the smooth strains. These results suggest that the O-polysaccharide of lipopolysaccharide shields the outer membrane antigens and that only fiber antigens protruding at the bacterial surface can elicit antibodies reacting with mastitis-associated E. coli We evaluated J5-induced antibodies in an opsonophagocytic killing assay with bovine neutrophils. J5 immune serum was not more efficient than preimmune serum, showing that immunization did not improve on the already high efficiency of naturally acquired antibodies to E. coli In conclusion, it is unlikely that the efficiency of J5 vaccines is related to the induction of opsonic antibodies. Consequently, other research directions, such as cell-mediated immunity, should be explored to improve E. coli mastitis vaccines.IMPORTANCE Despite intensive research, mastitis remains an important disease in dairy cattle with a significant impact on animal welfare, use of antibiotics, and, in the end, the economy of dairy farms. Although vaccines available so far have shown limited efficacy against coliform mastitis, vaccination is considered one of the measures that could limit the consequences of mastitis. One reason for the lack of efficiency of current vaccines likely stems from the current evaluation of vaccines that relies mostly on measuring antibody production against vaccine antigens. This report clearly shows that vaccine-induced antibodies fail to bind to most mastitis-associated E. coli strains because of the presence of an O-antigen and, thus, do not allow for improved phagocytosis of pathogens. As a consequence, this report calls for revised criteria for the evaluation of vaccines and suggests that cell-mediated immunity should be targeted by new vaccinal strategies. More generally, these results could be extended to other vaccine development strategies targeting coliform bacteria.


Assuntos
Anticorpos Antibacterianos/imunologia , Vacinas contra Escherichia coli/imunologia , Escherichia coli/imunologia , Lipopolissacarídeos/imunologia , Antígenos O/imunologia , Animais , Bovinos , Reações Cruzadas , Ensaio de Imunoadsorção Enzimática , Feminino , Imunização , Mastite Bovina/prevenção & controle , Fagocitose
12.
NPJ Vaccines ; 5(1): 108, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33298970

RESUMO

Vaccination against bovine mastitis lags behind despite high demand from the dairy industry and margin for efficacy improvement. We previously compared two immunization protocols against E. coli using either only the intramuscular route or a combination of intramuscular and mammary ductal routes, also known as 'prime and pull' strategy. A homologous mammary challenge during the memory phase showed that immunization favorably modified the mastitis course, notably in locally immunized cows in comparison to intramuscular and control adjuvant-only groups. Here, we performed whole-blood profiling through RNA-seq transcriptome and plasma cytokine 15-plex analyses at time points of the E. coli mastitis that showed significant clinical and laboratory differences among the groups. Diminished production of inflammatory cytokines and increased IFNγ were detected in the blood of immunized cows, where a T lymphocyte activation profile was evidenced at 12-h post infection. Acute phase neutropenia was less severe in these cows, and pathways related to neutrophil diapedesis and monocyte activation were also present. Furthermore, three intramammary-immunized cows showing faster healing and shorter mastitis duration had gene profiles that differed from their counterparts, but without any clue for the mastitis susceptibility difference. Inasmuch, when gene expression of CD4 T cells was assessed in mammary tissue, enrichment of IL-17-associated pathways was identified in the quarters of intramammary-immunized cows not only after challenge but also in the control quarters that were not infected. These findings indicate that local immunization mobilizes protective mechanisms that rely on the settlement of type 3 immunity-related CD4 T cells prior to infection.

13.
Vet Res ; 51(1): 129, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059767

RESUMO

Type 3 immunity encompasses innate and adaptive immune responses mediated by cells that produce the signature cytokines IL-17A and IL-17F. This class of effector immunity is particularly adept at controlling infections by pyogenic extracellular bacteria at epithelial barriers. Since mastitis results from infections by bacteria such as streptococci, staphylococci and coliform bacteria that cause neutrophilic inflammation, type 3 immunity can be expected to be mobilized at the mammary gland. In effect, the main defenses of this organ are provided by epithelial cells and neutrophils, which are the main terminal effectors of type 3 immunity. In addition to theoretical grounds, there is observational and experimental evidence that supports a role for type 3 immunity in the mammary gland, such as the production of IL-17A, IL-17F, and IL-22 in milk and mammary tissue during infection, although their respective sources remain to be fully identified. Moreover, mouse mastitis models have shown a positive effect of IL-17A on the course of mastitis. A lot remains to be uncovered before we can safely harness type 3 immunity to reinforce mammary gland defenses through innate immune training or vaccination. However, this is a promising way to find new means of improving mammary gland defenses against infection.


Assuntos
Imunidade Adaptativa , Imunidade Inata , Interleucina-17/imunologia , Mamíferos/imunologia , Glândulas Mamárias Animais/imunologia , Animais , Feminino
14.
Sci Rep ; 9(1): 16115, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31695097

RESUMO

Interleukin 17A-producing T helper cells (Th17) are CD4+ T cells that are crucial to immunity to extracellular bacteria. The roles of these cells in the bovine species are poorly defined, because the characterization of bovine Th17 cells lags behind for want of straightforward cultivation and isolation procedures. We have developed procedures to differentiate, expand, and isolate bovine Th17 cells from circulating CD4+ T cells of adult cows. Using polyclonal stimulation with antibodies to CD3 and CD28, we expanded IL-17A-positive CD4+ T cells in a serum-free cell culture medium supplemented with TGF-ß1, IL-6 and IL-2. Populations of CD4+ T cells producing IL-17A or IFN-γ or both cytokines were obtained. Isolation of IL-17A-secreting CD4+ T cells was performed by labelling surface IL-17A, followed by flow cytometry cell sorting. The sorted Th17 cells were restimulated and could be expanded for several weeks. These cells were further characterized by cytokine profiling at transcriptomic and protein levels. They produced high amounts of IL-17A and IL-17F, and moderate amounts of IL-22 and IFN-γ. The techniques developed will be useful to characterize the phenotypic and functional properties of bovine Th17 cells.


Assuntos
Células Th17/citologia , Animais , Bovinos , Técnicas de Cultura de Células , Proliferação de Células , Separação Celular , Células Cultivadas , Feminino , Interferon gama/genética , Interferon gama/metabolismo , Interleucina-17/genética , Interleucina-17/metabolismo , Interleucinas/genética , Interleucinas/metabolismo , Masculino , Células Th17/metabolismo , Fator de Crescimento Transformador beta1/genética , Fator de Crescimento Transformador beta1/metabolismo , Interleucina 22
16.
Front Vet Sci ; 5: 251, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364110

RESUMO

The urge to reduce antimicrobials use in dairy farming has prompted a search for alternative solutions. As infections of the mammary gland is a major reason for antibiotic administration to dairy ruminants, mammary probiotics have recently been presented as a possible alternative for the treatment of mastitis. To assess the validity of this proposal, we performed a general appraisal of the knowledge related to probiotics for mammary health by examining their potential modes of action and assessing the compatibility of these mechanisms with the immunobiology of mammary gland infections. Then we analyzed the literature published on the subject, taking into account the preliminary in vitro experiments and the in vivo trials. Preliminary experiments aimed essentially at exploring in vitro the capacity of putative probiotics, mainly lactic acid bacteria (LABs), to interfere with mastitis-associated bacteria or to interact with mammary epithelial cells. A few studies used LABs selected on the basis of bacteriocin production or the capacity to adhere to epithelial cells to perform in vivo experiments. Intramammary infusion of LABs showed that LABs are pro-inflammatory for the mammary gland, inducing an intense influx of neutrophils into milk during lactation and at drying-off. Yet, their capacity to cure mastitis remains to be established. A few preliminary studies tackle the possibility of using probiotics to interfere with the teat apex microbiota or to prevent the colonization of the teat canal by pathogenic bacteria. From the analysis of the published literature, it appears that currently there is no sound scientific foundation for the use of probiotics to prevent or treat mastitis. We conclude that the prospects for oral probiotics are not promising for ruminants, those for intramammary probiotics should be considered with caution, but that teat apex probiotics deserve further research.

17.
PLoS One ; 13(8): e0202664, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30142177

RESUMO

Escherichia coli is one of the major pathogens causing mastitis in dairy cattle. Yet, the factors which mediate the ability for E. coli to develop in the bovine mammary gland remain poorly elucidated. In a mouse model, infections induced by the reference mastitis E. coli P4 showed a strong colonisation of the mammary gland, while this strain had a low stimulating power on cells of the PS bovine mammary epithelial cell line. In order to understand if such a reduced response contributes to the severity of infection, a library of random mutants of P4 strain was screened to identify mutants inducing stronger response of PS cells. Among hyper-stimulating mutants, six were altered in genes involved in biosynthesis of lipopolysaccharide (LPS) and had lost their O-polysaccharide region, suggesting that the presence of O-antigen impairs the response of PS cells to LPS. Using purified smooth (S) and rough (R) fractions of LPS, we showed that the R-LPS fraction induced a stronger response from PS cells than the smooth LPS fraction. Biological activity of the S-LPS fraction could be restored by the addition of recombinant bovine CD14 (rbCD14), indicating a crucial role of CD14 in the recognition of S-LPS by Mammary Epithelial Cells (MEC). When S-LPS and R-LPS were injected in udder quarters of healthy lactating cows, an inflammation developed in all infused quarters, but the S-LPS induced a more intense pro-inflammatory response, possibly in relation to sizeable concentrations of CD14 in milk. Altogether, our results demonstrate that the O-antigen modulates the pro-inflammatory response of MEC to LPS, that S-LPS and R-LPS trigger different responses of MEC and that these responses depend on the presence of CD14.


Assuntos
Escherichia coli/metabolismo , Receptores de Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/imunologia , Antígenos O/metabolismo , Animais , Bovinos , Linhagem Celular , Quimiocinas/metabolismo , Citocinas/metabolismo , Elementos de DNA Transponíveis/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Feminino , Células HEK293 , Humanos , Receptores de Lipopolissacarídeos/química , Receptores de Lipopolissacarídeos/genética , Lipopolissacarídeos/análise , Lipopolissacarídeos/metabolismo , Mastite Bovina/imunologia , Mastite Bovina/microbiologia , Mastite Bovina/patologia , Leite/metabolismo , Leite/microbiologia , Mutagênese , Antígenos O/química , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Receptor 2 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo
18.
Vet Res ; 49(1): 72, 2018 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-30045763

RESUMO

Staphylococcus aureus is the major cause of very severe mastitis of dairy goats. The initial objective of our study was to fine-tune an experimental model of infection of the goat mammary gland with two strains of S. aureus and two lines of goats (low and high somatic cell score lines). Following the challenge, the 10 infected goats divided in two clear-cut severity groups, independently of the S. aureus strain and the goat line. Five goats developed very severe mastitis (of which four were gangrenous) characterized by uncontrolled infection (UI group), whereas the other five kept the infection under control (CI group). The outcome of the infection was determined by 18 h post-infection (hpi), as heralded by the bacterial milk concentration at 18 hpi: more than 107/mL in the UI group, about 106/mL in the CI group. Leukocyte recruitment and composition did not differ between the groups, but the phagocytic killing at 18 hpi efficiency did. Contributing factors involved milk concentrations of α-toxin and LukMF' leukotoxin, but not early expression of the genes encoding the pentraxin PTX3, the cytokines IL-1α and IL-1ß, and the chemokines IL-8 and CCL5. Concentrations of TNF-α, IFN-γ, IL-17A, and IL-22 rose sharply in the milk of UI goats when infection was out of control. The results indicate that defenses mobilized by the mammary gland at an early stage of infection were essential to prevent staphylococci from reaching critical concentrations. Staphylococcal exotoxin production appeared to be a consequent event inducing the evolution to gangrenous mastitis.


Assuntos
Doenças das Cabras/microbiologia , Cabras/genética , Mastite/veterinária , Seleção Genética , Infecções Estafilocócicas/veterinária , Staphylococcus aureus/fisiologia , Animais , Contagem de Células/veterinária , Feminino , Gangrena/microbiologia , Gangrena/veterinária , Mastite/microbiologia , Leite/microbiologia , Infecções Estafilocócicas/microbiologia
19.
mBio ; 9(2)2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29615502

RESUMO

Escherichia coli are major bacterial pathogens causing bovine mastitis, a disease of great economic impact on dairy production worldwide. This work aimed to study the virulence determinants of mammary pathogenic E. coli (MPEC). By whole-genome sequencing analysis of 40 MPEC and 22 environmental ("dairy-farm" E. coli [DFEC]) strains, we found that only the fec locus (fecIRABCDE) for ferric dicitrate uptake was present in the core genome of MPEC and that it was absent in DFEC genomes (P < 0.05). Expression of the FecA receptor in the outer membrane was shown to be citrate dependent by mass spectrometry. FecA was overexpressed when bacteria were grown in milk. Transcription of the fecA gene and of the inner membrane transport component fecB gene was upregulated in bacteria recovered from experimental intramammary infection. The presence of the fec system was shown to affect the ability of E. coli to grow in milk. While the rate of growth in milk of fec-positive (fec+) DFEC was similar to that of MPEC, it was significantly lower in DFEC lacking fec Furthermore, deletion of fec reduced the rate of growth in milk of MPEC strain P4, whereas fec-transformed non-mammary gland-pathogenic DFEC strain K71 gained the phenotype of the level of growth in milk observed in MPEC. The role of fec in E. coli intramammary pathogenicity was investigated in vivo in cows, with results showing that an MPEC P4 mutant lacking fec lost its ability to induce mastitis, whereas the fec+ DFEC K71 mutant was able to trigger intramammary inflammation. For the first time, a single molecular locus was shown to be crucial in MPEC pathogenicity.IMPORTANCE Bovine mastitis is the major infectious disease in dairy cows and the leading cause of economic loss to the global dairy industry, directly contributing to the price of dairy products on supermarket shelves and the financial hardships suffered by dairy farmers. Mastitis is also the leading reason for the use of antibiotics in dairy farms. Good farm management practices in many countries have dramatically reduced the incidence of contagious mastitis; however, the problems associated with the incidence of environmental mastitis caused by bacteria such as Escherichia coli have proven intractable. E. coli bacteria cause acute mastitis, which affects the health and welfare of cows and in extreme cases may be fatal. Here we show for the first time that the pathogenicity of E. coli causing mastitis in cows is highly dependent on the fecIRABCDE ferric citrate uptake system that allows the bacterium to capture iron from citrate. The Fec system is highly expressed during infection in the bovine udder and is ubiquitous in and necessary for the E. coli bacteria that cause mammary infections in cattle. These results have far-reaching implications, raising the possibility that mastitis may be controllable by targeting this system.


Assuntos
Infecções por Escherichia coli/microbiologia , Escherichia coli/genética , Escherichia coli/patogenicidade , Mastite Bovina/microbiologia , Fatores de Virulência/genética , Animais , Bovinos , Escherichia coli/crescimento & desenvolvimento , Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/análise , Proteínas de Escherichia coli/genética , Perfilação da Expressão Gênica , Loci Gênicos , Leite/microbiologia , Receptores de Superfície Celular/análise , Receptores de Superfície Celular/genética , Sequenciamento Completo do Genoma
20.
PLoS One ; 12(10): e0187369, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29088296

RESUMO

The outer membrane protein (Omp) A is a major constituent of the outer membrane of Escherichia coli. This protein has been used in several vaccine development studies, but seldom with a view to vaccinating against mastitis. The objective of this study was to investigate the immunogenicity of E. coli OmpA and its vaccine potential for cows. Both the humoral and cellular immune responses were investigated. The gene for OmpA of the mastitis-causing strain P4 was cloned and expressed, and the recombinant protein (rEcOmpA) purified. Cows were immunized twice with rEcOmpA with adjuvant one month apart by the systemic route. Before immunization, few antibodies to rEcOmpA were detected, and there was little production of IL-17A in a whole blood stimulation assay (WBA) with rEcOmpA. Antibodies to rEcOmpA were induced by immunization. These antibodies were not able to react with E. coli P4, but reacted with a rough P4 mutant prepared by inactivating the rfb locus. This suggests that the complete LPS O-chain precluded the accessibility of antibodies to their target at the outer membrane. The cellular immune response appeared to be biased towards a Th17-type, as more IL-17A than IFN-γ was produced in the OmpA-specific WBA. There was a good correlation between antibody titers and the production of IL-17A in the WBA. The intramammary instillation of rEcOmpA elicited a slight local inflammatory response which was not related to the WBA. Overall, the interest of OmpA as vaccine immunogen was not established, although other experimental conditions (dose, adjuvant, route) need to be investigated to conclude definitively. The study pointed to several important issues such as the accessibility of OmpA to antibodies and the weakness of Th1-type response induced by OmpA.


Assuntos
Anticorpos Antibacterianos/biossíntese , Proteínas da Membrana Bacteriana Externa/imunologia , Escherichia coli/imunologia , Imunidade Celular , Animais , Bovinos , Feminino , Lactação , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...