Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pathol ; 251(3): 310-322, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32315081

RESUMO

The phenotypic spectrum of colorectal cancer (CRC) is remarkably diverse, with seemingly endless variations in cell shape, mitotic figures and multicellular configurations. Despite this morphological complexity, histological grading of collective phenotype patterns provides robust prognostic stratification in CRC. Although mechanistic understanding is incomplete, previous studies have shown that the cortical protein ezrin controls diversification of cell shape, mitotic figure geometry and multicellular architecture, in 3D organotypic CRC cultures. Because ezrin is a substrate of Src tyrosine kinase that is frequently overexpressed in CRC, we investigated Src regulation of ezrin and morphogenic growth in 3D CRC cultures. Here we show that Src perturbations disrupt CRC epithelial spatial organisation. Aberrant Src activity suppresses formation of the cortical ezrin cap that anchors interphase centrosomes. In CRC cells with a normal centrosome number, these events lead to mitotic spindle misorientation, perturbation of cell cleavage, abnormal epithelial stratification, apical membrane misalignment, multilumen formation and evolution of cribriform multicellular morphology, a feature of low-grade cancer. In isogenic CRC cells with centrosome amplification, aberrant Src signalling promotes multipolar mitotic spindle formation, pleomorphism and morphological features of high-grade cancer. Translational studies in archival human CRC revealed associations between Src intensity, multipolar mitotic spindle frequency and high-grade cancer morphology. Collectively, our study reveals Src regulation of CRC morphogenic growth via ezrin-centrosome engagement and uncovers combined perturbations underlying transition to high-grade CRC morphology. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Centrossomo/enzimologia , Neoplasias Colorretais/enzimologia , Proteínas do Citoesqueleto/metabolismo , Mitose , Quinases da Família src/metabolismo , Células CACO-2 , Centrossomo/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Proteínas do Citoesqueleto/genética , Quinase 1 de Adesão Focal/genética , Quinase 1 de Adesão Focal/metabolismo , Células HCT116 , Humanos , Gradação de Tumores , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Transdução de Sinais , Quinases da Família src/genética
2.
Am J Pathol ; 188(9): 1936-1948, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30028958

RESUMO

Colorectal cancer (CRC) diagnosis and prognostic stratification are based on histopathologic assessment of cell or nuclear pleomorphism, aberrant mitotic figures, altered glandular architecture, and other phenomic abnormalities. This complexity is driven by oncogenic perturbation of tightly coordinated spatiotemporal signaling to disrupt multiple scales of tissue organization. This review clarifies molecular and cellular mechanisms underlying common CRC histologic features and helps understand how the CRC genome controls core aspects of tumor aggressiveness. It further explores a spatiotemporal framework for CRC phenomics based on regulation of living cells in fundamental and organotypic model systems. The review also discusses tissue homeostasis, considers distinct classes of oncogenic perturbations, and evolution of cellular or multicellular cancer phenotypes. It further explores the molecular controls of cribriform, micropapillary, and high-grade CRC morphology in organotypic culture models and assesses relevant translational studies. In addition, the review delves into complexities of morphologic plasticity whereby a single molecular signature generates heterogeneous cancer phenotypes, and, conversely, morphologically homogeneous tumors show substantive molecular diversity. Principles outlined may aid mechanistic interpretation of omics data in a setting of cancer pathology, provide insight into CRC consensus molecular subtypes, and better define principles for CRC prognostic stratification.


Assuntos
Neoplasias Colorretais/patologia , Modelos Animais de Doenças , Técnicas de Cultura de Órgãos/métodos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...