Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 21556, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36513732

RESUMO

Increasing agricultural soil carbon sequestration without compromising the productivity of the land is a key challenge in global climate change mitigation. The carbon mitigation potential of grass-based agriculture is particularly high because grasslands represent 70% of the world's agricultural area. The root systems of grasses transfer large amounts of carbon to below-ground storage, and the carbon allocation to the roots is dependent on the grasses' photosynthesizing shoot biomass. In a common-garden experiment, Festuca pratensis was used as a model species to study how mowing and weed control practices of perennial cool-season fodder grasses affect total yield and root biomass. Additionally, grass-associated Epichloë endophytes and soil residual glyphosate were tested for their effect on the total yield and root biomass alone or in interaction with mowing. The results demonstrate that elevating the cutting height increases both cumulative yield and root biomass in F. pratensis. Endophyte symbiosis increased the total yield, while glyphosate-based herbicide residues in the soil decreased the root biomass, which indicates a reduction of soil bound carbon sequestration. The findings demonstrate that carbon sequestration and yield quantities on farmed grasslands may significantly be improved by optimizing strategies for the use of plant protection products and adjustment of mowing intensity.


Assuntos
Epichloe , Festuca , Lolium , Simbiose , Biomassa , Endófitos/metabolismo , Poaceae , Solo/química , Carbono/metabolismo
2.
Sci Total Environ ; 750: 141422, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32858290

RESUMO

Glyphosate-based herbicides (GBHs) are the most frequently used herbicides globally. They were launched as a safe solution for weed control, but recently, an increasing number of studies have shown the existence of GBH residues and highlighted the associated risks they pose throughout ecosystems. Conventional agricultural practices often include the use of GBHs, and the use of glyphosate-resistant genetically modified crops is largely based on the application of glyphosate, which increases the likelihood of its residues ending up in animal feed. These residues persist throughout the digestive process of production animals and accumulate in their excretion products. The poultry industry, in particular, is rapidly growing, and excreted products are used as plant fertilizers in line with circular food economy practices. We studied the potential effects of unintentional glyphosate contamination on an agronomically important forage grass, meadow fescue (Festuca pratensis) and a horticulturally important strawberry (Fragaria x vescana) using glyphosate residues containing poultry manure as a plant fertilizer in a common garden experiment. Glyphosate in the manure decreased plant growth in both species and vegetative reproduction in F. x vescana. Furthermore, our results indicate that glyphosate residues in organic fertilizers might have indirect effects on sexual reproduction in F. pratensis and herbivory in F. x vescana because they positively correlate with plant size. Our results highlight that glyphosate can be unintentionally spread via organic fertilizer, counteracting its ability to promote plant growth.


Assuntos
Fertilizantes , Herbicidas , Animais , Produtos Agrícolas/genética , Ecossistema , Glicina/análogos & derivados , Herbicidas/toxicidade , Esterco , Plantas Geneticamente Modificadas , Glifosato
3.
Glob Chang Biol ; 23(10): 4354-4364, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28317226

RESUMO

Despite the increasing rate of urbanization, the consequences of this process on biotic interactions remain insufficiently studied. Our aims were to identify the general pattern of urbanization impact on background insect herbivory, to explore variations in this impact related to characteristics of both urban areas and insect-plant systems, and to uncover the factors governing urbanization impacts on insect herbivory. We compared the foliar damage inflicted on the most common trees by defoliating, leafmining and gall-forming insects in rural and urban habitats associated with 16 European cities. In two of these cities, we explored quality of birch foliage for herbivorous insects, mortality of leafmining insects due to predators and parasitoids and bird predation on artificial plasticine larvae. On average, the foliage losses to insects were 16.5% lower in urban than in rural habitats. The magnitude of the overall adverse effect of urbanization on herbivory was independent of the latitude of the locality and was similar in all 11 studied tree species, but increased with an increase in the size of the urban area: it was significant in large cities (city population 1-5 million) but not significant in medium-sized and small towns. Quality of birch foliage for herbivorous insects was slightly higher in urban habitats than in rural habitats. At the same time, leafminer mortality due to ants and birds and the bird attack intensity on dummy larvae were higher in large cities than in rural habitats, which at least partially explained the decline in insect herbivory observed in response to urbanization. Our findings underscore the importance of top-down forces in mediating impacts of urbanization on plant-feeding insects: factors favouring predators may override the positive effects of temperature elevation on insects and thus reduce plant damage.


Assuntos
Aves , Herbivoria , Insetos , Comportamento Predatório , Animais , Cidades , Larva , Folhas de Planta , Árvores
4.
Oecologia ; 180(3): 619-30, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26201260

RESUMO

The enemies hypothesis states that reduced insect herbivory in mixed-species stands can be attributed to more effective top-down control by predators with increasing plant diversity. Although evidence for this mechanism exists for invertebrate predators, studies on avian predation are comparatively rare and have not explicitly tested the effects of diversity at different spatial scales, even though heterogeneity at macro- and micro-scales can influence bird foraging selection. We studied bird predation in an established forest diversity experiment in SW Finland, using artificial larvae installed on birch, alder and pine trees. Effects of tree species diversity and densities on bird predation were tested at two different scales: between plots and within the neighbourhood around focal trees. At the neighbourhood scale, birds preferentially foraged on focal trees surrounded by a higher diversity of neighbours. However, predation rates did not increase with tree species richness at the plot level and were instead negatively affected by tree height variation within the plot. The highest probability of predation was observed on pine, and rates of predation increased with the density of pine regardless of scale. Strong tree species preferences observed may be due to a combination of innate bird species preferences and opportunistic foraging on profitable-looking artificial prey. This study therefore finds partial support for the enemies hypothesis and highlights the importance of spatial scale and focal tree species in modifying trophic interactions between avian predators and insect herbivores in forest ecosystems.


Assuntos
Aves/fisiologia , Ecossistema , Insetos/fisiologia , Comportamento Predatório/fisiologia , Árvores/fisiologia , Animais , Biodiversidade , Finlândia , Preferências Alimentares , Herbivoria , Larva , Densidade Demográfica
5.
Parasit Vectors ; 8: 648, 2015 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-26691851

RESUMO

BACKGROUND: Birds host several ectoparasitic fly species with negative effects on nestling health and reproductive output, and with the capability of transmitting avian blood parasites. Information on the abundance and distribution of the ectoparasitic fly genera Ornithomya (Hippoboscidae) and Protocalliphora (Calliphoridae) in northern Europe is still generally poor, and we thus explored their geographic range and occurrence of these flies in the nests of a common avian model species, the pied flycatcher Ficedula hypoleuca. METHODS: Nests of F. hypoleuca were collected from 21 locations across Fennoscandia in summer 2013, across a latitudinal gradient (between 56 °N - 70 °N) and examined for the presence of fly puparia. Adult specimens of Ornithomya spp. were also collected for species identification. Fly species were identified morphologically and identifications confirmed with DNA barcoding. RESULTS: We found three species: two louse-flies - Ornithomya chloropus and O. avicularia - and one blow-fly, Protocalliphora azurea. The prevalence of O. avicularia was higher in southern latitudes and this species was not encountered beyond 62 °N whereas O. chloropus and P. azurea occurred across the whole range of latitudes. The prevalence of O. chloropus further increased with increasing distance from the coast - a pattern not documented before. The three fly species showed no interspecific associations in their prevalence. CONCLUSIONS: Our study revealed relatively high prevalence for all the species (O. chloropus 59 %, O. avicularia 20 %, P. azurea 32 %), and an interesting spatial pattern in the prevalence of the two louse fly species. Our sample did not indicate any major range shifts towards the north for the southern species as compared to the information from the past. Morphological identification of O. chloropus did not match with the corresponding sequences published in the GenBank and taxonomy of this group calls for further studies.


Assuntos
Dípteros/classificação , Dípteros/crescimento & desenvolvimento , Ectoparasitoses/veterinária , Aves Canoras/parasitologia , Animais , Ectoparasitoses/parasitologia , Europa (Continente) , Filogeografia , Prevalência
6.
Ecol Evol ; 5(6): 1205-13, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25859326

RESUMO

For migratory birds, the earlier arrival of males to breeding grounds is often expected to have fitness benefits. However, the selection differential on male arrival time has rarely been decomposed into the direct effect of male arrival and potential indirect effects through female traits. We measured the directional selection differential on male arrival time in the pied flycatcher (Ficedula hypoleuca) using data from 6 years and annual number of fledglings as the fitness proxy. Using structural equation modeling, we were able to take into account the temporal structure of the breeding cycle and the hierarchy between the examined traits. We found directional selection differentials for earlier male arrival date and earlier female laying date, as well as strong selection differential for larger clutch size. These selection differentials were due to direct selection only as indirect selection for these traits was nonsignificant. When decomposing the direct selection for earlier male arrival into direct and indirect effects, we discovered that it was almost exclusively due to the direct effect of male arrival date on fitness and not due to its indirect effects via female traits. In other words, we showed for the first time that there is a direct effect of male arrival date on fitness while accounting for those effects that are mediated by effects of the social partner. Our study thus indicates that natural selection directly favored earlier male arrival in this flycatcher population.

7.
Proc Biol Sci ; 278(1707): 835-42, 2011 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-20861045

RESUMO

Climate is changing at a fast pace, causing widespread, profound consequences for living organisms. Failure to adjust the timing of life-cycle events to climate may jeopardize populations by causing ecological mismatches to the life cycle of other species and abiotic factors. Population declines of some migratory birds breeding in Europe have been suggested to depend on their inability to adjust migration phenology so as to keep track of advancement of spring events at their breeding grounds. In fact, several migrants have advanced their spring arrival date, but whether such advancement has been sufficient to compensate for temporal shift in spring phenophases or, conversely, birds have become ecologically mismatched, is still an unanswered question, with very few exceptions. We used a novel approach based on accumulated winter and spring temperatures (degree-days) as a proxy for timing of spring biological events to test if the progress of spring at arrival to the breeding areas by 117 European migratory bird species has changed over the past five decades. Migrants, and particularly those wintering in sub-Saharan Africa, now arrive at higher degree-days and may have therefore accumulated a 'thermal delay', thus possibly becoming increasingly mismatched to spring phenology. Species with greater 'thermal delay' have shown larger population decline, and this evidence was not confounded by concomitant ecological factors or by phylogenetic effects. These findings provide general support to the largely untested hypotheses that migratory birds are becoming ecologically mismatched and that failure to respond to climate change can have severe negative impacts on their populations. The novel approach we adopted can be extended to the analysis of ecological consequences of phenological response to climate change by other taxa.


Assuntos
Migração Animal , Aves/fisiologia , Mudança Climática , Temperatura , Animais , Densidade Demográfica , Dinâmica Populacional , Estações do Ano
8.
Sci Total Environ ; 408(19): 4165-9, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20542535

RESUMO

Passerine birds need extra calcium during their breeding for developing egg shells and proper growth of nestling skeleton. Land snails are an important calcium source for many passerines and human-induced changes in snail populations may pose a severe problem for breeding birds. We studied from the bird's viewpoint how air pollution affects the shell mass, abundance and diversity of land snail communities along a pollution gradient of a copper smelter. We sampled remnant snail shells from the nests of an insectivorous passerine, the pied flycatcher, Ficedula hypoleuca, to find out how the availability of land snails varies along the pollution gradient. The total snail shell mass increased towards the pollution source but declined abruptly in the vicinity of the smelter. This spatial variation in shell mass was evident also within a single snail species and could not be wholly explained by spatially varying snail numbers or species composition. Instead, the total shell mass was related to their shell size, individuals being largest at the moderately polluted areas. Smaller shell size suggests inferior growth of snails in the most heavily polluted area. Our study shows that pollution affects the diversity, abundance (available shell mass) and individual quality of land snails, posing reproductive problems for birds that rely on snails as calcium sources during breeding. There are probably both direct pollution-related (heavy metal and calcium levels) and indirect (habitat change) effects behind the observed changes in snail populations.


Assuntos
Poluentes Atmosféricos/toxicidade , Passeriformes/crescimento & desenvolvimento , Caramujos/crescimento & desenvolvimento , Animais , Cálcio/metabolismo , Dieta , Monitoramento Ambiental , Caramujos/efeitos dos fármacos , Caramujos/metabolismo
9.
Integr Comp Biol ; 50(3): 293-304, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21558204

RESUMO

Evidence for climate-driven phenological changes is rapidly increasing at all trophic levels. Our current poor knowledge of the detailed control of bird migration from the level of genes and hormonal control to direct physiological and behavioral responses hampers our ability to understand and predict consequences of climatic change for migratory birds. In order to better understand migration phenology and adaptation in environmental changes, we here assess the scale at which weather affects timing of spring migration in passerine birds. We use three commonly used proxies of spring-time climatic conditions: (1) vegetation "greenness" (NDVI) in Europe, (2) local spring temperatures in northern Europe, and (3) the North Atlantic Oscillation Index (NAO) as predictors of the phenology of avian migration as well as the strength of their effect on different subsets of populations and the dependence of correlations on species-specific migratory strategy. We analyze phenological patterns of the entire spring migration period in 12 Palaearctic passerine species, drawing on long-term data collected at three locations along a longitudinal gradient situated close to their northern European breeding area. Local temperature was the best single predictor of phenology with the highest explanatory power achieved in combination with NAO. Furthermore, early individuals are more affected by climatic variation compared to individuals on later passage, indicating that climatic change affects subsets of migratory populations differentially. Species wintering closer to the breeding areas were affected more than were those travelling longer distances and this pattern was strongest for the earliest subsets of the population. Overall, our results suggest that at least early subsets of the population are affected by local conditions and early birds use local conditions to fine-tune the date of their spring arrival while individuals arriving later are driven by other factors than local conditions e.g. endogenous control. Understanding what cues migratory organisms use to arrive at an optimum time is important for increasing our knowledge of fundamental issues like decision making in organisms during migration and is crucial for future protection of migratory organisms.


Assuntos
Migração Animal/fisiologia , Estações do Ano , Pardais/fisiologia , Temperatura , Animais , Meio Ambiente , Europa (Continente) , Fenótipo
10.
Biol Lett ; 4(6): 685-8, 2008 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-18700199

RESUMO

The onset of migration in birds is assumed to be primarily under endogenous control in long-distance migrants. Recently, climate changes appear to have been driving a rapid change in breeding area arrival. However, little is known about the climatic factors affecting migratory birds during the migration cycle, or whether recently reported phenological changes are caused by plastic behavioural responses or evolutionary change. Here, we investigate how environmental conditions in the wintering areas as well as en route towards breeding areas affect timing of migration. Using data from 1984 to 2004 covering the entire migration period every year from observatories located in the Middle East and northern Europe, we show that passage of the Sahara Desert is delayed and correlated with improved conditions in the wintering areas. By contrast, migrants travel more rapidly through Europe, and adjust their breeding area arrival time in response to improved environmental conditions en route. Previous studies have reported opposing results from a different migration route through the Mediterranean region (Italy). We argue that the simplest explanation for different phenological patterns at different latitudes and between migratory routes appears to be phenotypic responses to spatial variability in conditions en route.


Assuntos
Migração Animal , Aves , Efeito Estufa , Adaptação Fisiológica , Animais , Região do Mediterrâneo , Especificidade da Espécie , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...