Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Appl Opt ; 37(24): 5760-70, 1998 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-18286068

RESUMO

A large throughput transmission spectrometer, with a grating on a prism as the diffraction element, has been developed to study altitude distributions of auroral emissions. The imaging spectrometer disperses spectrally in one dimension while spatial information is preserved in the orthogonal direction. The image is projected onto a CCD array detector. Image processing methods have been developed to calibrate for wavelength, uniform field, spectral sensitivity, curvature of field, and spatial mapping. Single images are processed to represent a measured signal brightness in a unit of Rayleighs/pixel, from which area integrations can be made for desired spatial-spectral resolution. System performance is ~1.5-nm resolution over a 450-nm bandwidth (420-870 nm). Two spectrometer systems of this design were operated simultaneously, one with additional optical instruments and an incoherent scatter radar at Sondrestrom, Greenland, and the other at Godhavn, Greenland, which lies 290 km to the northwest and nearly in the magnetic meridian of Sondrestrom. The developed system, calibration method, and examples of performance results are presented.

2.
Appl Opt ; 32(34): 7095-105, 1993 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20856574

RESUMO

In a conventional grating spectrograph consisting of a single entrance slit, a grating, and a multichannel (imaging) detector, considerable light throughput advantage can be realized by replacement of the single entrance slit with a mask. This replacement can yield a signal-to-noise ratio increase because of increased light collection over an extended area of the mask when compared with a single slit. The mask produces a spectrum on the detector, which is the convolution of the mask pattern and the spectral distribution of the light source. To retrieve the spectrum, the spectrum has to be inverted. In special cases in which emission spectra are superimposed on weak backgrounds, the signal-to-noise advantage is preserved through the inversion process. Thus this technique is valuable in the observation of light sources that are produced by atomic or molecular emissions such as aurora, airglow, some interstellar emission, or laboratory spectra. Considerable signal-to-noise advantages can also be realized when the background noise of the imaging detector is not negligible. The spectral mixing of the light from the mask on the detector causes high photon fluxes on the detector, which tend to swamp the detector noise. This is a particularly important advantage in the application of CCD's as detectors because they can have significant background noise. The technique was demonstrated by computer simulations and laboratory tests.

3.
Science ; 207(4429): 415-21, 1980 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-17833551

RESUMO

Our 31 August to 5 September 1979 observations together with those of the other Pioneer 11 investigators provide the first credible discovery of the magnetosphere of Saturn and many detailed characteristics thereof. In physical dimensions and energetic charged particle population, Saturn's magnetosphere is intermediate between those of Earth and Jupiter. In terms of planetary radii, the scale of Saturn's magnetosphere more nearly resembles that of Earth and there is much less inflation by entrapped plasma than in the case at Jupiter. The orbit of Titan lies in the outer fringes of the magnetosphere. Particle angular distributions on the inbound leg of the trajectory (sunward side) have a complex pattern but are everywhere consistent with a dipolar magnetic field approximately perpendicular to the planet's equator. On the outbound leg (dawnside) there are marked departures from this situation outside of 7 Saturn radii (Rs), suggesting an equatorial current sheet having both longitudinal and radial components. The particulate rings and inner satellites have a profound effect on the distribution of energetic particles. We find (i) clear absorption signatures of Dione and Mimas; (ii) a broad absorption region encompassing the orbital radii of Tethys and Enceladus but probably attributable, at least in part, to plasma physical effects; (iii) no evidence for Janus (1966 S 1) (S 10) at or near 2.66 Rs; (iv) a satellite of diameter greater, similar 170 kilometers at 2.534 R(s) (1979 S 2), probably the same object as that detected optically by Pioneer 11 (1979 S 1) and previously by groundbased telescopes (1966 S 2) (S 11); (v) a satellite of comparable diameter at 2.343 Rs (1979 S 5); (vi) confirmation of the F ring between 2.336 and 2.371 Rs; (vii) confirmation of the Pioneer division between 2.292 and 2.336 Rs; (viii) a suspected satellite at 2.82 Rs (1979 S 3); (ix) no clear evidence for the E ring though its influence may be obscured by stronger effects; and (x) the outer radius of the A ring at 2.292 Rs. Inside of 2.292 Rs there is a virtually total absence of magnetospheric particles and a marked reduction in cosmic-ray intensity. All distances are in units of the adopted equatorial radius of Saturn, 60,000 kilometers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...