Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 5845, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38992039

RESUMO

Spontaneous symmetry breaking and emergent polar order are each of fundamental importance to a range of scientific disciplines, as well as generating rich phase behaviour in liquid crystals (LCs). Here, we show the union of these phenomena to lead to two previously undiscovered polar liquid states of matter. Both phases have a lamellar structure with an inherent polar ordering of their constituent molecules. The first of these phases is characterised by polar order and a local tilted structure; the tilt direction processes about a helix orthogonal to the layer normal, the period of which is such that we observe selective reflection of light. The second new phase type is anti-ferroelectric, with the constituent molecules aligning orthogonally to the layer normal. This has led us to term the phases the Sm C P H and SmAAF phases, respectively. Further to this, we obtain room temperature ferroelectric nematic (NF) and Sm C P H phases via binary mixture formulation of the novel materials described here with a standard NF compound (DIO), with the resultant materials having melting points (and/or glass transitions) which are significantly below ambient temperature. The new soft matter phase types discovered herein can be considered as electrical analogues of topological structures of magnetic spins in hard matter.

2.
Macromolecules ; 57(11): 5218-5229, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38882196

RESUMO

Liquid crystal elastomers (LCEs) are polymeric materials that are proposed for a range of applications. However, to reach their full potential, it is desirable to have as much flexibility as possible in terms of the sample dimensions, while maintaining well-defined alignment. In this work, photoinduced electron/energy transfer reversible addition-fragmentation chain transfer (PET-RAFT) polymerization is applied to the synthesis of LCEs for the first time. An initial LCE layer (∼100 µm thickness) is partially cured before a second layer of the precursor mixture is added. The curing reaction is then resumed and is observed by FTIR to complete within 15 min of irradiation, yielding samples of increased thickness. Monodomain samples that exhibit an auxetic response and are of thickness 250-300 µm are consistently achieved. All samples are characterized thermally, mechanically, and in terms of their order parameters. The LCEs have physical properties comparable to those of analogous LCEs produced via free-radical polymerization.

3.
Macromolecules ; 57(5): 2030-2038, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38495386

RESUMO

Determining the tunability of the optical coefficients, order parameter, and transition temperatures in optically transparent auxetic liquid crystal elastomers (LCEs) is vital for applications, including impact-resistant glass laminates. Here, we report measurements of the refractive indices, order parameters, and transition temperatures in a family of acrylate-based LCEs in which the mesogenic content varies from ∼50 to ∼85%. Modifications in the precursor mixture allow the order parameter, ⟨P2⟩, of the LCE to be adjusted from 0.46 to 0.73. The extraordinary refractive index changes most significantly with composition, from ∼1.66 to ∼1.69, in moving from a low to high mesogenic content. We demonstrate that all LCE refractive indices decrease with increasing temperature, with temperature coefficients of ∼10-4 K-1, comparable to optical plastics. In these LCEs, the average refractive index and the refractive index anisotropy are tunable via both chemical composition and order parameter control; we report design rules for both.

4.
Philos Trans A Math Phys Eng Sci ; 380(2234): 20210326, 2022 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-36031830

RESUMO

We develop a mathematical model that builds on the surprising nonlinear mechanical response observed in recent experiments on nematic liquid crystal elastomers. Namely, under uniaxial tensile loads, the material, rather than thinning in the perpendicular directions, becomes thicker in one direction for a sufficiently large strain, while its volume remains unchanged. Motivated by this unusual large-strain auxetic behaviour, we model the material using an Ogden-type strain-energy function and calibrate its parameters to available datasets. We show that Ogden strain-energy functions are particularly suitable for modelling nematic elastomers because of their mathematical simplicity and their clear formulation in terms of the principal stretches, which have a direct kinematic interpretation. This article is part of the theme issue 'The Ogden model of rubber mechanics: Fifty years of impact on nonlinear elasticity'.

5.
Materials (Basel) ; 16(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36614732

RESUMO

Auxetic materials exhibit a negative Poisson's ratio, i.e., they become thicker rather than thinner in at least one dimension when strained. Recently, a nematic liquid crystal elastomer (LCE) was shown to be the first synthetic auxetic material at a molecular level. Understanding the mechanism of the auxetic response in LCEs is clearly important, and it has been suggested through detailed Raman scattering studies that it is related to the reduction of uniaxial order and emergence of biaxial order on strain. In this paper, we demonstrate direct observation of the biaxial order in an auxetic LCE under strain. We fabricated ~100 µm thick LCE strips with complementary geometries, exhibiting either planar or homeotropic alignment, in which the auxetic response is seen in the thickness or width of the sample, respectively. Polarized Raman scattering measurements on the planar sample show directly the reduction in the uniaxial order parameters on strain and suggest the emergence of biaxial order to mediate the auxetic response in the sample thickness. The homeotropic sample is studied via conoscopy, allowing direct observation of both the auxetic response in the width of the sample and increasing biaxiality in the LCE as it is strained. We verified that the mechanism of the auxetic response in auxetic LCEs is due to the emergence of the biaxial order and conclude such materials can be added to the small number of biaxial nematic systems that have been observed. Importantly, we also show that the mechanical Frèedericksz transition seen in some LCEs is consistent with a strain-induced transition from an optically positive to an optically negative biaxial system under strain, rather than a director rotation in a uniaxial system.

6.
Molecules ; 26(23)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34885896

RESUMO

Liquid Crystal Elastomers (LCEs) combine the anisotropic ordering of liquid crystals with the elastic properties of elastomers, providing unique physical properties, such as stimuli responsiveness and a recently discovered molecular auxetic response. Here, we determine how the molecular relaxation dynamics in an acrylate LCE are affected by its phase using broadband dielectric relaxation spectroscopy, calorimetry and rheology. Our LCE is an excellent model system since it exhibits a molecular auxetic response in its nematic state, and chemically identical nematic or isotropic samples can be prepared by cross-linking. We find that the glass transition temperatures (Tg) and dynamic fragilities are similar in both phases, and the T-dependence of the α relaxation shows a crossover at the same T* for both phases. However, for T>T*, the behavior becomes Arrhenius for the nematic LCE, but only more Arrhenius-like for the isotropic sample. We provide evidence that the latter behavior is related to the existence of pre-transitional nematic fluctuations in the isotropic LCE, which are locked in by polymerization. The role of applied strain on the relaxation dynamics and mechanical response of the LCE is investigated; this is particularly important since the molecular auxetic response is linked to a mechanical Fréedericksz transition that is not fully understood. We demonstrate that the complex Young's modulus and the α relaxation time remain relatively unchanged for small deformations, whereas for strains for which the auxetic response is achieved, significant increases are observed. We suggest that the observed molecular auxetic response is coupled to the strain-induced out-of-plane rotation of the mesogen units, in turn driven by the increasing constraints on polymer configurations, as reflected in increasing elastic moduli and α relaxation times; this is consistent with our recent results showing that the auxetic response coincides with the emergence of biaxial order.

7.
Nanomaterials (Basel) ; 11(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810173

RESUMO

The term liquid crystal elastomer (LCE) describes a class of materials that combine the elastic entropy behaviour associated with conventional elastomers with the stimuli responsive properties of anisotropic liquid crystals. LCEs consequently exhibit attributes of both elastomers and liquid crystals, but additionally have unique properties not found in either. Recent developments in LCE synthesis, as well as the understanding of the behaviour of liquid crystal elastomers-namely their mechanical, optical and responsive properties-is of significant relevance to biology and biomedicine. LCEs are abundant in nature, highlighting the potential use of LCEs in biomimetics. Their exceptional tensile properties and biocompatibility have led to research exploring their applications in artificial tissue, biological sensors and cell scaffolds by exploiting their actuation and shock absorption properties. There has also been significant recent interest in using LCEs as a model for morphogenesis. This review provides an overview of some aspects of LCEs which are of relevance in different branches of biology and biomedicine, as well as discussing how recent LCE advances could impact future applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...