Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Appl Physiol (1985) ; 136(4): 954-965, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38482578

RESUMO

Whether eccentric exercise involves active fascicle stretch is unclear due to muscle-tendon unit (MTU) series compliance. Therefore, this study investigated the impact of changing the activation timing and level (i.e., preactivation) of the contraction on muscle fascicle kinematics and kinetics of the human tibialis anterior during dynamometer-controlled maximal voluntary MTU-stretch-hold contractions. B-mode ultrasound and surface electromyography were used to assess muscle fascicle kinematics and muscle activity levels, respectively. Although joint kinematics were similar among MTU-stretch-hold contractions (∼40° rotation amplitude), increasing preactivation increased fascicle shortening and stretch amplitudes (9.9-23.2 mm, P ≤ 0.015). This led to increasing positive and negative fascicle work with increasing preactivation. Despite significantly different fascicle kinematics, similar peak fascicle forces during stretch occurred at similar fascicle lengths and joint angles regardless of preactivation. Similarly, residual force enhancement (rFE) following MTU stretch was not significantly affected (6.5-7.6%, P = 0.559) by preactivation, but rFE was strongly correlated with peak fascicle force during stretch (rrm = 0.62, P = 0.003). These findings highlight that apparent eccentric exercise causes shortening-stretch contractions at the fascicle level rather than isolated eccentric contractions. The constant rFE despite different fascicle kinematics and kinetics suggests that a passive element was engaged at a common muscle length among conditions (e.g., optimal fascicle length). Although it remains unclear whether different fascicle mechanics trigger different adaptations to eccentric exercise, this study emphasizes the need to consider MTU series compliance to better understand the mechanical drivers of adaptation to exercise.NEW & NOTEWORTHY Apparent eccentric exercises do not result in isolated eccentric contractions, but shortening-stretch contractions at the fascicle level. The amount of fascicle shortening and stretch depends on the preactivation during the exercise and cannot be estimated from the muscle-tendon unit (MTU) or joint kinematics. As different fascicle mechanics might trigger different adaptations to eccentric exercise, muscle-tendon unit series compliance and muscle preactivation need to be considered when eccentric exercise protocols are designed.


Assuntos
Músculo Esquelético , Tendões , Humanos , Músculo Esquelético/fisiologia , Tendões/fisiologia , Contração Muscular/fisiologia , Eletromiografia , Exercício Físico , Contração Isométrica/fisiologia
2.
PeerJ ; 11: e15693, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37461407

RESUMO

Background: Knowledge of the muscle's lengths at which maximum active isometric force is attained is important for predicting forces during movement. However, there is limited information about the in vivo force-length properties of a human muscle that plays crucial roles during locomotion; the tibialis anterior (TA). We therefore aimed to estimate TA's force-length relation from dorsiflexor torque-angle curves constructed from eight women and eight men. Methods: Participants performed maximal voluntary fixed-end contractions with their right ankle dorsiflexors from 0° to 30° plantar flexion. Muscle fascicle lengths were estimated from B-mode ultrasound images, and net ankle joint torques were measured using dynamometry. Fascicle forces were estimated by dividing maximal active torques by literature-derived, angle-specific tendon moment arm lengths while assuming a fixed 50% force contribution of TA to the total dorsiflexor force and accounting for fascicle angles. Results: Maximal active torques were higher at 15° than 20° and 30° plantar flexion (2.4-6.4 Nm, p ≤ 0.012), whereas maximal active TA fascicle forces were higher at 15° than 0°, 20° and 30° plantar flexion (25-61 N, p ≤ 0.042), but not different between 15° and 10° plantar flexion (15 N, p = 0.277). TA fascicle shortening magnitudes during fixed-end contractions were larger at 15° than 30° plantar flexion (3.9 mm, p = 0.012), but less at 15° than 0° plantar flexion (-2.4 mm, p = 0.001), with no significant differences (≤0.7 mm, p = 0.871) between TA's superficial and deep muscle compartments. Series elastic element stiffness was lowest and highest at lengths 5% shorter and 5% longer than optimum fascicle length, respectively (-30 and 15 N/mm, p ≤ 0.003). Discussion: TA produced its maximum active force at 10-15° plantar flexion, and its normalized force-length relation had ascending and descending limbs that agreed with a simple scaled sarcomere model when active fascicle lengths from within TA's superficial or deep muscle compartment were considered. These findings can be used to inform the properties of the contractile and series elastic elements of Hill-type muscle models.


Assuntos
Contração Isométrica , Músculo Esquelético , Masculino , Humanos , Feminino , Adulto Jovem , Contração Isométrica/fisiologia , Músculo Esquelético/diagnóstico por imagem , Tendões/fisiologia , Contração Muscular/fisiologia , Articulação do Tornozelo/diagnóstico por imagem
3.
J Biomech ; 142: 111261, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36027634

RESUMO

A muscle's contractile element length relative to its muscle-tendon unit (MTU) length is a fundamental design feature affecting MTU function, with high (0.9) or low ratios (0.1) favouring either rapid or economical force production, respectively. Despite the importance for MTU function, little in vivo work has been done to understand contractile element-MTU length ratio variability between individuals and sexes. We therefore compared the medial gastrocnemius (MG) MTU ratios of thirteen females and eighteen males, and explored whether individual ratios could be predicted based on anatomical features. At the presumed tendon slack length ankle joint angle, lengths of MG's MTU, Achilles tendon, muscle belly and its muscle fascicles were measured from B-mode ultrasound images. Contractile element length was represented by the in-series muscle fascicle length (FL) and was calculated by multiplying FL by the cosine of fascicle angle. The mean ± standard deviation in-series FL-MTU length ratio was 0.09 ± 0.02 and ranged from 0.06 to 0.11, whereas the muscle belly length-MTU length ratio was 0.54 ± 0.38 and ranged from 0.47 to 0.60. Neither ratio was significantly different between females and males (p ≥ 0.116). In-series FL was not significantly correlated with MTU length (r = -0.115, p =.538), muscle belly length (r = 0.05, p =.788), or shank length (r = 0.169, p =.364), but MTU length was significantly correlated with muscle belly length (r = 0.641, p <.001), and shank length (r = 0.575, p =.001). A low in-series FL-MTU length ratio suggests that the MG of young, healthy individuals is specialised for energy-efficient stretch-shortening cycles. These findings provide useful inputs for the MTU actuator design of Hill-type models.


Assuntos
Tendão do Calcâneo , Músculo Esquelético , Tendão do Calcâneo/diagnóstico por imagem , Tendão do Calcâneo/fisiologia , Articulação do Tornozelo/diagnóstico por imagem , Articulação do Tornozelo/fisiologia , Feminino , Humanos , Perna (Membro) , Masculino , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia
4.
Scand J Med Sci Sports ; 32(10): 1464-1476, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35844051

RESUMO

Combined heavy- and light-load ballistic training is often employed in high-performance sport to improve athletic performance and is accompanied by adaptations in muscle architecture. However, little is known about how training affects muscle-tendon unit (MTU) kinematics during the execution of a sport-specific skill (e.g., jumping), which could improve our understanding of how training improves athletic performance. The aim of this study was to investigate vastus lateralis (VL) MTU kinematics during a countermovement jump (CMJ) following combined ballistic training. Eighteen young, healthy males completed a 10-week program consisting of weightlifting derivatives, plyometrics, and ballistic tasks under a range of loads. Ultrasonography of VL and force plate measurements during a CMJ were taken at baseline, mid-test, and post-test. The training program improved CMJ height by 11 ± 13%. During the CMJ, VL's MTU and series elastic element (SEE) length changes and velocities increased from baseline to post-test, but VL's fascicle length change and velocity did not significantly change. It is speculated that altered lower limb coordination and increased force output of the lower limb muscles during the CMJ allowed more energy to be stored within VL's SEE. This may have contributed to enhanced VL MTU work during the propulsion phase and an improved CMJ performance following combined ballistic training.


Assuntos
Desempenho Atlético , Força Muscular , Desempenho Atlético/fisiologia , Fenômenos Biomecânicos , Humanos , Masculino , Força Muscular/fisiologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Músculo Quadríceps , Tendões/diagnóstico por imagem , Tendões/fisiologia
5.
PeerJ ; 10: e12729, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35036100

RESUMO

BACKGROUND: Following stretch of an active muscle, muscle force is enhanced, which is known as residual force enhancement (rFE). As earlier studies found apparent corticospinal excitability modulations in the presence of rFE, this study aimed to test whether corticospinal excitability modulations contribute to rFE. METHODS: Fourteen participants performed submaximal plantar flexion stretch-hold and fixed-end contractions at 30% of their maximal voluntary soleus muscle activity in a dynamometer. During the steady state of the contractions, participants either received subthreshold or suprathreshold transcranial magnetic stimulation (TMS) of their motor cortex, while triceps surae muscle responses to stimulation were obtained via electromyography (EMG), and net ankle joint torque was recorded. B-mode ultrasound imaging was used to confirm muscle fascicle stretch during stretch-hold contractions in a subset of participants. RESULTS: Following stretch of the plantar flexors, an average rFE of 7% and 11% was observed for contractions with subthreshold and suprathreshold TMS, respectively. 41-46 ms following subthreshold TMS, triceps surae muscle activity was suppressed by 19-25%, but suppression was not significantly different between stretch-hold and fixed-end contractions. Similarly, the reduction in plantar flexion torque following subthreshold TMS was not significantly different between contraction conditions. Motor evoked potentials, silent periods and superimposed twitches following suprathreshold TMS were also not significantly different between contraction conditions. DISCUSSION: As TMS of the motor cortex did not result in any differences between stretch-hold and fixed-end contractions, we conclude that rFE is not linked to changes in corticospinal excitability.


Assuntos
Contração Isométrica , Músculo Esquelético , Humanos , Contração Isométrica/fisiologia , Torque , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Fenômenos Mecânicos
6.
Front Sports Act Living ; 3: 669813, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34179775

RESUMO

Current debate exists around whether a presumed eccentric exercise, the Nordic hamstring exercise (NHE), actually causes active hamstring muscle lengthening. This is because of the decoupling that can occur between the muscle fascicle and muscle-tendon unit (MTU) length changes in relatively compliant human lower-limb MTUs, which results in MTU lengthening not necessarily causing muscle fascicle lengthening. This missing knowledge complicates the interpretation of why the NHE is effective at reducing running-related hamstring muscle injury risk in athletes previously unfamiliar with performing this exercise. The purpose of the study was therefore to investigate if the most-commonly injured hamstring muscle, the biceps femoris long head (BF), exhibits active muscle lengthening (i.e. an eccentric muscle action) during the NHE up until peak force in Nordic novices. External reaction force at the ankle, knee flexion angle, and BF and semitendinosus muscle activities were recorded from the left leg of 14 participants during the NHE. Simultaneously, BF muscle architecture was imaged using B-mode ultrasound imaging, and muscle architecture changes were tracked using two different tracking algorithms. From ~85 to 100% of peak NHE force, both tracking algorithms detected that BF muscle fascicles (n = 10) significantly lengthened (p < 0.01) and had a mean positive lengthening velocity (p ≤ 0.02), while knee extension velocity remained positive (17°·s-1) over knee flexion angles from 53 to 37° and a duration of 1.6 s. Despite some individual cases of brief isometric fascicle behavior and brief fascicle shortening during BF MTU lengthening, the predominant muscle action was eccentric under a relatively high muscle activity level (59% of maximum). Eccentric hamstring muscle action therefore does occur during the NHE in relatively strong (429 N) Nordic novices, which might contribute to the increase in resting BF muscle fascicle length and reduction in running-related injury risk, which have previously been reported following NHE training. Whether an eccentric BF muscle action occurs in individuals accustomed to the NHE remains to be tested.

7.
J Exp Biol ; 224(Pt 1)2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33257433

RESUMO

Much of our understanding of in vivo skeletal muscle properties is based on studies performed under maximal activation, which is problematic because muscles are rarely activated maximally during movements such as walking. Currently, force-length properties of the human triceps surae at submaximal voluntary muscle activity levels are not characterized. We therefore evaluated plantar flexor torque- and force-ankle angle, and torque- and force-fascicle length properties of the soleus and lateral gastrocnemius muscles during voluntary contractions at three activity levels: 100, 30 and 22% of maximal voluntary contraction. Soleus activity levels were controlled by participants via real-time electromyography feedback and contractions were performed at ankle angles ranging from 10 deg plantar flexion to 35 deg dorsiflexion. Using dynamometry and ultrasound imaging, torque-fascicle length curves of the soleus and lateral gastrocnemius muscles were constructed. The results indicate that small muscle activity reductions shift the torque- and force-angle, and torque- and force-fascicle length curves of these muscles to more dorsiflexed ankle angles and longer fascicle lengths (from 3 to 20% optimal fascicle length, depending on ankle angle). The shift in the torque- and force-fascicle length curves during submaximal voluntary contraction have potential implications for human locomotion (e.g. walking) as the operating range of fascicles shifts to the ascending limb, where muscle force capacity is reduced by at least 15%. These data demonstrate the need to match activity levels during construction of the torque- and force-fascicle length curves to activity levels achieved during movement to better characterize the lengths that muscles operate at relative to their optimum during a specific task.


Assuntos
Contração Isométrica , Contração Muscular , Articulação do Tornozelo , Eletromiografia , Humanos , Músculo Esquelético , Torque
8.
Eur J Appl Physiol ; 120(12): 2597-2610, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32892321

RESUMO

PURPOSE: Force enhancement is the phenomenon of increased forces during (transient force enhancement; tFE) and after (residual force enhancement; rFE) eccentric muscle actions compared with fixed-end contractions. Although tFE and rFE have been observed at short and long muscle lengths, whether both are length-dependent remains unclear in vivo. METHODS: We determined maximal-effort vastus lateralis (VL) force-angle relationships of eleven healthy males and selected one knee joint angle at a short and long muscle lengths where VL produced approximately the same force (85% of maximum). We then examined tFE and rFE at these two lengths during and following the same amount of knee joint rotation. RESULTS: We found tFE at both short (11.7%, P = 0.017) and long (15.2%, P = 0.001) muscle lengths. rFE was only observed at the long (10.6%, P < 0.001; short: 1.3%, P = 0.439) muscle length. Ultrasound imaging revealed that VL muscle fascicle stretch magnitude was greater at long compared with short muscle lengths (mean difference: (tFE) 1.7 mm, (rFE) 1.9 mm, P ≤ 0.046), despite similar isometric VL forces across lengths (P ≥ 0.923). Greater fascicle stretch magnitude was likely to be due to greater preload forces at the long compared with short muscle length (P ≤ 0.001). CONCLUSION: At a similar isometric VL force capacity, tFE was not muscle-length-dependent at the lengths we tested, whereas rFE was greater at longer muscle length. We speculate that the in vivo mechanical factors affecting tFE and rFE are different and that greater stretch of a passive component is likely contributing more to rFE at longer muscle lengths.


Assuntos
Contração Isométrica/fisiologia , Músculo Quadríceps/fisiologia , Adulto , Humanos , Articulação do Joelho/fisiologia , Masculino
9.
Med Sci Sports Exerc ; 52(1): 233-243, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31403609

RESUMO

PURPOSE: This study aimed to compare biceps femoris long head (BFlh) fascicle length (Lf) obtained with different ultrasound-based approaches: 1) single ultrasound images and linear Lf extrapolation, 2) single ultrasound images and one of two different trigonometric equations (termed equations A and B), and 3) extended field of view (EFOV) ultrasound images. METHODS: Thirty-seven elite alpine skiers (21.7 ± 2.8 yr) without a previous history of hamstring strain injury were tested. Single ultrasound images were collected with a 5-cm linear transducer from BFlh at 50% femur length and were compared with whole muscle scans acquired by EFOV ultrasound. RESULTS: The intrasession reliability (intraclass correlation coefficient [ICC3,k]) of Lf measurements was very high for both single ultrasound images (i.e., Lf estimated by linear extrapolation; ICC3,k = 0.96-0.99, SEM = 0.18 cm) and EFOV scans (ICC3,k = 0.91-0.98, SEM = 0.19 cm). Although extrapolation methods showed cases of Lf overestimation and underestimation when compared with EFOV scans, mean Lf measured from EFOV scans (8.07 ± 1.36 cm) was significantly shorter than Lf estimated by trigonometric equations A (9.98 ± 2.12 cm, P < 0.01) and B (8.57 ± 1.59 cm, P = 0.03), but not significantly different from Lf estimated with manual linear extrapolation (8.40 ± 1.68 cm, P = 0.13). Bland-Altman analyses revealed mean differences in Lf obtained from EFOV scans and those estimated from equation A, equation B, and manual linear extrapolation of 1.91 ± 2.1, 0.50 ± 1.0, and 0.33 ± 1.0 cm, respectively. CONCLUSIONS: The typical extrapolation methods used for estimating Lf from single ultrasound images are reliable within the same session, but not accurate for estimating BFlh Lf at rest with a 5-cm field of view. We recommend that EFOV scans are implemented to accurately determine intervention-related Lf changes in BFlh.


Assuntos
Músculos Isquiossurais/anatomia & histologia , Músculos Isquiossurais/diagnóstico por imagem , Feminino , Músculos Isquiossurais/lesões , Humanos , Masculino , Reprodutibilidade dos Testes , Fatores de Risco , Esqui/lesões , Esqui/fisiologia , Ultrassonografia/métodos , Adulto Jovem
11.
Acta Physiol (Oxf) ; 225(3): e13198, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30300958

RESUMO

AIM: We investigated if residual force depression (rFD) is present during voluntary fixed-end contractions of human tibialis anterior (TA) and whether reducing TA's activation level after active shortening could reduce rFD. METHODS: Ten participants performed fixed-end dorsiflexion contractions to a low, moderate or high level while electromyography (EMG), dorsiflexion force and TA ultrasound images were recorded. Contractions were force- or EMG-matched and after the low or high contraction level was attained, participants respectively increased or decreased their force/EMG to a moderate level. Participants also performed moderate level contractions while the TA muscle-tendon unit (MTU) was lengthened during the force/EMG rise to the reference MTU length. RESULTS: Equivalent fascicle shortening over moderate and low to moderate level contractions did not alter EMG (P = 0.45) or dorsiflexion force (P = 0.47) at the moderate level. Greater initial fascicle shortening magnitudes (1.7 mm; P ≤ 0.01) to the high contraction level did not alter EMG (P = 0.45) or dorsiflexion force (P = 0.30) at the subsequent moderate level compared with moderate level contractions. TA MTU lengthening during the initial force/EMG rise reduced TA fascicle shortening (-2.5 mm; P ≤ 0.01), which reduced EMG (-3.9% MVC; P < 0.01) and increased dorsiflexion force (3.7% MVC; P < 0.01) at the moderate level compared with fixed-end moderate level contractions. CONCLUSION: rFD is present during fixed-end dorsiflexion contractions because fascicles actively shorten as force/EMG increases and rFD can be reduced by reducing the effective MTU compliance. A reduction in muscle activation level also reduces rFD by potentially triggering residual force enhancement-related mechanisms as force drops and some fascicles actively lengthen.


Assuntos
Depressão/fisiopatologia , Contração Isométrica/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiopatologia , Adulto , Eletromiografia/métodos , Humanos , Masculino , Tendões/fisiologia , Ultrassonografia/métodos
12.
Ultrasound Med Biol ; 44(12): 2492-2504, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30185385

RESUMO

Skeletal muscle structural assembly (and its remodeling in response to loading-unloading states) can be investigated macroscopically by assessing muscle architecture, described as fascicle geometric disposition within the muscle. Over recent decades, various medical imaging techniques have been developed to facilitate the in vivo assessment of muscle architecture. However, the main advantages and limitations of these methodologies have been fragmentally discussed. In the present article, the main techniques used for the evaluation of muscle architecture are presented: conventional B-mode ultrasonography, extended-field-of-view ultrasound, 3-D ultrasound and magnetic resonance imaging-based diffusion tensor imaging. By critically discussing potentials and shortcomings of each methodology, we aim to provide readers with an overview of both established and new techniques for the in vivo assessment of muscle architecture. This review may serve as decision guidance facilitating selection of the appropriate technique to be applied in biomedical research or clinical routine.


Assuntos
Imagem de Tensor de Difusão/métodos , Imageamento Tridimensional/métodos , Imageamento por Ressonância Magnética/métodos , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/fisiologia , Ultrassonografia/métodos , Humanos , Força Muscular/fisiologia , Músculo Esquelético/diagnóstico por imagem
13.
R Soc Open Sci ; 4(3): 160901, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28405377

RESUMO

Understanding how humans adapt gait mechanics for a wide variety of locomotor tasks is important for inspiring the design of robotic, prosthetic and wearable assistive devices. We aimed to elicit the mechanical adjustments made to leg joint functions that are required to generate accelerative walking and running, using metrics with direct relevance to device design. Twelve healthy male participants completed constant speed (CS) walking and running and emulated acceleration (ACC) trials on an instrumented treadmill. External force and motion capture data were combined in an inverse dynamics analysis. Ankle, knee and hip joint mechanics were described and compared using angles, moments, powers and normalized functional indexes that described each joint as relatively more: spring, motor, damper or strut-like. To accelerate using a walking gait, the ankle joint was switched from predominantly spring-like to motor-like, while the hip joint was maintained as a motor, with an increase in hip motor-like function. Accelerating while running involved no change in the primary function of any leg joint, but involved high levels of spring and motor-like function at the hip and ankle joints. Mechanical adjustments for ACC walking were achieved primarily via altered limb positioning, but ACC running needed greater joint moments.

14.
PeerJ ; 4: e2260, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547566

RESUMO

Background. Muscles not only shorten during contraction to perform mechanical work, but they also bulge radially because of the isovolumetric constraint on muscle fibres. Muscle bulging may have important implications for muscle performance, however quantifying three-dimensional (3D) muscle shape changes in human muscle is problematic because of difficulties with sustaining contractions for the duration of an in vivo scan. Although two-dimensional ultrasound imaging is useful for measuring local muscle deformations, assumptions must be made about global muscle shape changes, which could lead to errors in fully understanding the mechanical behaviour of muscle and its surrounding connective tissues, such as aponeurosis. Therefore, the aims of this investigation were (a) to determine the intra-session reliability of a novel 3D ultrasound (3DUS) imaging method for measuring in vivo human muscle and aponeurosis deformations and (b) to examine how contraction intensity influences in vivo human muscle and aponeurosis strains during isometric contractions. Methods. Participants (n = 12) were seated in a reclined position with their left knee extended and ankle at 90° and performed isometric dorsiflexion contractions up to 50% of maximal voluntary contraction. 3DUS scans of the tibialis anterior (TA) muscle belly were performed during the contractions and at rest to assess muscle volume, muscle length, muscle cross-sectional area, muscle thickness and width, fascicle length and pennation angle, and central aponeurosis width and length. The 3DUS scan involved synchronous B-mode ultrasound imaging and 3D motion capture of the position and orientation of the ultrasound transducer, while successive cross-sectional slices were captured by sweeping the transducer along the muscle. Results. 3DUS was shown to be highly reliable across measures of muscle volume, muscle length, fascicle length and central aponeurosis length (ICC ≥ 0.98, CV < 1%). The TA remained isovolumetric across contraction conditions and progressively shortened along its line of action as contraction intensity increased. This caused the muscle to bulge centrally, predominantly in thickness, while muscle fascicles shortened and pennation angle increased as a function of contraction intensity. This resulted in central aponeurosis strains in both the transverse and longitudinal directions increasing with contraction intensity. Discussion. 3DUS is a reliable and viable method for quantifying multidirectional muscle and aponeurosis strains during isometric contractions within the same session. Contracting muscle fibres do work in directions along and orthogonal to the muscle's line of action and central aponeurosis length and width appear to be a function of muscle fascicle shortening and transverse expansion of the muscle fibres, which is dependent on contraction intensity. How factors other than muscle force change the elastic mechanical behaviour of the aponeurosis requires further investigation.

15.
J Biomech ; 49(3): 493-5, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26776929

RESUMO

Muscle stiffness estimated using shear wave elastography can provide an index of individual muscle force during isometric contraction and may therefore be a promising method for quantifying co-contraction. We estimated the shear modulus of the lateral gastrocnemius (LG) muscle using supersonic shear wave imaging and measured its myoelectrical activity using surface electromyography (sEMG) during graded isometric contractions of plantar flexion and dorsiflexion (n=7). During dorsiflexion, the average shear modulus was 26 ± 6 kPa at peak sEMG amplitude, which was significantly less (P=0.02) than that measured at the same sEMG level during plantar flexion (42 ± 10 kPa). The passive tension during contraction was estimated using the passive LG muscle shear modulus during a passive ankle rotation measured at an equivalent ankle angle to that measured during contraction. The passive shear modulus increased significantly (P<0.01) from the plantar flexed position (16 ± 5 kPa) to the dorsiflexed position (26 ± 9 kPa). Once this change in passive tension from joint rotation was accounted for, the average LG muscle shear modulus due to active contraction was significantly greater (P<0.01) during plantar flexion (26 ± 8 kPa) than at sEMG-matched levels of dorsiflexion (0 ± 4 kPa). The negligible shear modulus estimated during isometric dorsiflexion indicates negligible active force contribution by the LG muscle, despite measured sEMG activity of 19% of maximal voluntary plantar flexion contraction. This strongly suggests that the sEMG activity recorded from the LG muscle during isometric dorsiflexion was primarily due to cross-talk. However, it is clear that passive muscle tension changes can contribute to joint torque during isometric dorsiflexion.


Assuntos
Articulação do Tornozelo/fisiologia , Tornozelo/fisiologia , Contração Isométrica/fisiologia , Contração Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto , Técnicas de Imagem por Elasticidade , Eletromiografia , Humanos , Imageamento Tridimensional , Masculino , Tono Muscular , Pressão , Estresse Mecânico , Ossos do Tarso , Torque , Adulto Jovem
16.
Proc Biol Sci ; 282(1819)2015 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-26609085

RESUMO

The force produced by a muscle depends on both the neural drive it receives and several biomechanical factors. When multiple muscles act on a single joint, the nature of the relationship between the neural drive and force-generating capacity of the synergistic muscles is largely unknown. This study aimed to determine the relationship between the ratio of neural drive and the ratio of muscle force-generating capacity between two synergist muscles (vastus lateralis (VL) and vastus medialis (VM)) in humans. Twenty-one participants performed isometric knee extensions at 20 and 50% of maximal voluntary contractions (MVC). Myoelectric activity (surface electromyography (EMG)) provided an index of neural drive. Physiological cross-sectional area (PCSA) was estimated from measurements of muscle volume (magnetic resonance imaging) and muscle fascicle length (three-dimensional ultrasound imaging) to represent the muscles' force-generating capacities. Neither PCSA nor neural drive was balanced between VL and VM. There was a large (r = 0.68) and moderate (r = 0.43) correlation between the ratio of VL/VM EMG amplitude and the ratio of VL/VM PCSA at 20 and 50% of MVC, respectively. This study provides evidence that neural drive is biased by muscle force-generating capacity, the greater the force-generating capacity of VL compared with VM, the stronger bias of drive to the VL.


Assuntos
Contração Isométrica , Fadiga Muscular , Músculo Quadríceps/fisiologia , Adulto , Fenômenos Biomecânicos , Eletromiografia , Feminino , Humanos , Masculino , Adulto Jovem
17.
J Appl Physiol (1985) ; 118(10): 1193-9, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25614599

RESUMO

Because of the approximate linear relationship between muscle force and muscle activity, muscle forces are often estimated during maximal voluntary isometric contractions (MVICs) from torque and surface electromyography (sEMG) measurements. However, sEMG recordings from a target muscle may contain cross-talk originating from nearby muscles, which could lead to erroneous force estimates. Here we used ultrasound imaging to measure in vivo muscle fascicle length (Lf) changes and sEMG to measure muscle activity of the tibialis anterior, medial gastrocnemius, lateral gastrocnemius, and soleus muscles during ramp MVICs in plantar and dorsiflexion directions (n = 8). After correcting longitudinal Lf changes for ankle rotation, the antagonist Lf at peak antagonist root-mean-square (RMS) amplitude were significantly longer than the agonist Lf at this sEMG-matched level. On average, Lf shortened from resting length by 1.29 to 2.90 mm when muscles acted as agonists and lengthened from resting length by 0.43 to 1.16 mm when muscles acted as antagonists (depending on the muscle of interest). The lack of fascicle shortening when muscles acted as antagonists indicates that cocontraction was likely to be negligible, despite cocontraction as determined by sEMG of between 7 and 23% MVIC across all muscles. Different interelectrode distances (IEDs) over the plantar flexors revealed significantly higher antagonist RMS amplitudes for the 4-cm IEDs compared with the 2-cm IEDs, which further indicates that cross-talk was present. Consequently, investigators should be wary about performing agonist torque corrections for isometric plantar flexion and dorsiflexion based on the antagonist sEMG trace and predicted antagonist moment.


Assuntos
Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/fisiologia , Adulto , Tornozelo/fisiologia , Fenômenos Biomecânicos , Eletrodos , Eletromiografia , Feminino , Humanos , Contração Isométrica/fisiologia , Articulação do Joelho/fisiologia , Masculino , Contração Muscular/fisiologia , Fenômenos Fisiológicos Musculoesqueléticos , Descanso/fisiologia , Torque , Ultrassonografia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...