Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 14(5)2021 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-33803381

RESUMO

Bladder cancer is the leading cause of death in patients with genitourinary cancer. An elevated level of hyaluronidase (HAase) was found in bladder cancer, which acts as an important biomarker for the early diagnosis of bladder cancer. Hence, there is a need to develop a simple enzymatic assay for the early recognition of HAase. Herein, we report a simple, sensitive, and ratiometric fluorescence assay for HAase detection under physiological conditions. The fluorescence assay was constructed by the adsorption of cationic carbon dots and positively charged naphthalimide on negatively charged hyaluronic acid and the development of a Förster resonance energy transfer (FRET) mechanism from carbon dots to a naphthalimide fluorophores. The hyaluronidase enzyme cleaves the hyaluronic acid in this assay, and breaking down the FRET mechanism induces ratiometric changes. A detection limit of 0.09 U/mL was achieved, which is less than the HAase level found in normal human body fluids. Moreover, this assay may be used for diagnosing HAase-related diseases.

2.
Bull Environ Contam Toxicol ; 105(1): 95-102, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32537734

RESUMO

Differential pulse polarographic (DPP) investigations on the reaction of the amino function of glyphosate and glufosinate herbicides with carbon disulphide and copper(II) perchlorate forming copper(III) dithiocarbamate complexes were made in the presence of sodium perchlorate in acetonitrile at dropping mercury electrode (DME). The newly formed herbicide complexes exhibited analytically useful diffusion-controlled peaks at - 115 mV and - 110 mV versus saturated calomel electrode (SCE) with linear relationship between current and concentration. This observation formed the basis for the determination of glyphosate and glufosinate in the concentration ranges 0.34-8.45 µg mL-1 and 0.4-9.91 µg mL-1 respectively with correlation coefficient of 0.999. The method was applied to their determinations in soil, fortified food and spiked water samples to assess their environmental relevance. The recoveries of the herbicides were in the range 89.5%-98.3% with relative standard deviation (RSD) in the ranges 0.8%-1.8% thus showing good accuracy and precision of the method.


Assuntos
Monitoramento Ambiental , Glicina/análogos & derivados , Herbicidas/análise , Aminobutiratos , Glicina/análise , Solo , Glifosato
3.
Analyst ; 145(11): 3948-3957, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32314981

RESUMO

Carbon Quantum Dots (CQDs) have been extensively employed in various fields of science such as sensing, catalysis, and drug delivery. In this work, ionic liquid coated CQDs (IL@CQDs) have been used as catalysts for the rearrangement of a 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) amide coupling intermediate. The rearranged product was confirmed by single crystal structure analysis and it was processed into organic nanoparticles (ONPs). An optical detection method was used to scrutinize the anion sensing properties. The ONPs were found to be sensitive and selective for the recognition of highly toxic cyanide ions through enhancement in the fluorescence intensity. The cyanide ion co-ordinates with the -NH groups of the product and restricts the rotation of molecules around the single bond. The ONPs coated over silica-beads were also showing CN- recognition in the solid state. The detection limit for CN- sensing was found to be 3.8 nM, and real sample analysis depicts more than 90% accuracy in detection.

4.
Inorg Chem ; 58(15): 9773-9784, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31318533

RESUMO

In recent years, transition metal complexes have been developed for catalytical degradation of a phosphate ester bond, particularly in RNA and DNA; however, less consideration has been given for development of complexes for the degradation of a phosphorothioate bond, as they are the foremost used pesticides in the environment and are toxic to human beings. In this context, we have developed copper complexes of benzimidazolium based ligands for catalytical degradation of a series of organophosphates (parathion, paraoxon, methyl-parathion) at ambient conditions. The copper complexes (assigned as N1-N3) were characterized using single X-ray crystallography which revealed that all three complexes are mononuclear and distorted square planner in geometry. Further, the solution state studies of the prepared complexes were carried out using UV-visible absorption, fluorescence spectroscopy, and cyclic voltametry. The complexes N1 and N2 have benzimidazolium ionic liquid as base attached with two 2-mercapto-benzimidazole pods, whereas complex N3 contains a nonionic ligand. The synthesized copper complexes were evaluated for their catalytic activity for degradation of organophosphates. It is interesting that the complex containing the ionic ligand efficiently degrades phosphorothioate pesticides, whereas complex N3 was not found to be appropriate for degradation due to a weaker conversion rate. The organophosphate degradation studies were monitored by recording absorbance spectra of parathion in the presence of catalyst, i.e., copper complexes with respect to time. The parathion was hydrolyzed into para-nitrophenol and diethyl thiophosphate. Moreover, to analyze the inhibition activity of the pesticides toward acetylcholine esterase enzyme in the presence of prepared metal complexes, Ellman's assay was performed and revealed that, within 20 min, the inhibition of acetylcholine esterase enzyme decreases by up to 13%.


Assuntos
Acetilcolina/metabolismo , Esterases/metabolismo , Estruturas Metalorgânicas/química , Praguicidas/química , Praguicidas/toxicidade , Fosfatos/química , Acetilcolina/análise , Benzimidazóis/química , Catálise , Cobre/química , Cristalografia por Raios X , Esterases/análise , Estruturas Metalorgânicas/síntese química , Modelos Moleculares , Estrutura Molecular , Fosfatos/toxicidade
5.
Anal Chim Acta ; 1009: 1-11, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29422126

RESUMO

Carbon Quantum Dots (CDs) owing to its unique photophysical properties have attracted immense consideration of the researchers in last decade to explore its applications in the fields of bio-imaging and sensing. In the present work, we have developed a novel CDs functionalized with Calix[4]arene derivative by hydrothermal route to detect biologically pertinent Zn2+ ions. Surface modification of CDs enhances fluorescence efficiency apart from introducing active surface sites broadening its sensor capabilities. The obtained surface-functionalized CDs exhibits a strong blue fluorescence under UV light (365 nm) with a quantum yield (Φ) of 56% which is appreciably good. Zn2+ ions get apprehended in the cavity formed due to passivation by Calix[4]arene moeity on the exterior of CDs having profuse -NH2 groups. Addition of Zn2+ ions into the solution of CDs results in remarkable enhancement in the fluorescence intensity attributed to Photo-induced Electron Transfer (PET) "OFF" phenomenon. The CDs based nanosensor exhibited a wide linear response with a detection limit of 7.34 nM. Significantly, CDs were shown to display insignificant cytotoxicity, decent biocompatibility, and virtuous resistance to photo-bleaching, good stability over a wide range of pH, insignificant variation in the emission intensity in the presence of high concentration of salt and excellent bio-labeling ability when tested on E. coli cell lines. Additionally, the detection results of Zn2+ ions obtained in real samples were in complete agreement with that obtained by Atomic Absorption Spectroscopy (AAS), signifying the prospective application of the proposed probe as a selective and sensitive sensor for Zn2+ ions. The proposed sensor was also applied for fluorescence imaging of intracellular Zn2+ ions.


Assuntos
Calixarenos/química , Carbono/química , Fluorescência , Fenóis/química , Pontos Quânticos , Zinco/análise , Células Cultivadas , Escherichia coli/citologia , Corantes Fluorescentes/química , Íons/análise , Estrutura Molecular , Imagem Óptica , Tamanho da Partícula , Teoria Quântica , Soluções , Espectrometria de Fluorescência , Propriedades de Superfície , Fatores de Tempo , Raios Ultravioleta , Água/química
6.
J Mater Chem B ; 6(30): 4872-4902, 2018 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32255063

RESUMO

There is burgeoning interest among supramolecular chemists to develop novel molecular systems to detect biogenic amines and bio-thiols in aqueous and non-aqueous media due to their potential role in biological processes. Biogenic amines are biologically important targets because of their involvement in the energy metabolism of human biological systems and their requirement is met through food and nutrition. However, the increasing instances of serious health problems due to food toxicity have raised the quality of food nowadays. Biogenic amines have been frequently considered as the markers or primary quality parameters of foods like antioxidant properties, freshness and spoilage. For instance, these amines such as spermine, spermidine, cadavarine, etc. may originate during microbial decarboxylation of amino acids of fermented foods/beverages. These amines may also react with nitrite available in certain meat products and concomitantly produce carcinogenic nitrosamine compounds. On the other hand, it is also well established that biothiols, particularly, thiol amino acids, provide the basic characteristics to food including flavor, color and texture that determine its acceptability. For instance, the reduction of thiol groups produces hydrogen sulfide which reduces flavour as in rotten eggs and spoiled fish, and the presence of hydrogen sulfide in fish is indicative of spoilage. Thus, biogenic amines and bio-thiols have attracted the profound interest of researchers as analytical tools for their quantification. Much scientific and technological information is issued every year, where the establishment of precise interactions of biogenic amines and bio-thiols with other molecules is sought in aqueous and non-aqueous media. This review summarizes the optical chemosensors developed for the selective detection of biogenic amines and bio-thiols.

7.
Dalton Trans ; 46(3): 985-994, 2017 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-28009905

RESUMO

Two copper complexes C1 and C2 have been designed and developed for selective sensing of organophosphates. It is important to develop an efficient method for the detection of these agents for environmental analysis because the overuse of these agents in the environment causes harmful effects on living systems. Our attempts to utilize the copper complexes for the detection of organophosphates remained successful: the C1 complex has shown selective binding for the azamethiphos with a detection limit of 19 nM; while the C2 complex has not revealed any selectivity for any of the tested organophosphates. The results indicated that the coordination sphere of the C1 complex is proficiently engineered in such a way that it offers judicial binding sites for guest molecules.

8.
ACS Appl Mater Interfaces ; 8(42): 28641-28651, 2016 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-27731616

RESUMO

The unregulated use of chemical weapons has aroused researchers to develop sensors for chemical warfare agents (CWA) and likewise to abolish their harmful effects, the degradation through catalysis has great advantage. Chemically, the CWAs are versatile; however, mostly they contain organophosphates that act on inhibition of acetyl cholinesterase. In this work, we have designed and synthesized some novel benzimidazolium based fluorescent cations and their fluorescent aggregates were fabricated using anionic surfactants (SDS and SDBS) in aqueous medium. The prepared fluorescent aggregates have shown aggregation induced emission enhancement, which was further used as detection of chemical warfare agent in aqueous medium. The aggregates (Benz-2/SDBS and Benz-3/SDBS) have shown significant changes in emission profile upon interaction with diethylchlorophosphate. Contrarily, the pure dipodal receptor Benz-4 has not shown any response in emission after interaction with organophosphate, and consequently, it was concluded that benzimidazolium cation plays a decisive role in sensing. The mechanism of sensing was fully validated using 31P NMR spectroscopy as well as GC-MS, which highlights the transformation of diethylchlorophosphate into diethylhydrogen phosphate. The aggregates selectively interact with diethylchlorophosphate over other biological important phosphates.

9.
Inorg Chem ; 55(10): 4874-83, 2016 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-27115348

RESUMO

The hexadentate ligands H2L1-L3 with mixed S, N, O donor sites and possessing substituents having either "no" or electron-releasing/withdrawing nature at terminal ends are synthesized. The ligands H2L1-L3 were tested for binding with library of metal ions, wherein maximum efficiency was observed with Ni(2+), and it motivated us to prepare the Ni(2+) complexes. The ligand H2L1 underwent deprotonation and formed binuclear complex when interacted with Ni(2+) as evident from its crystal structure. The H2L2 and H2L3 having electron-withdrawing/electron releasing groups, respectively, were also deprotonated; however, they afforded mononuclear complexes with Ni(2+) ion. This signifies the importance of steric parameters instead of electronic factors in these particular cases. Impressed by differential behavior of complexes of H2L1 and H2L2/H2L3 with Ni(2+) and their photophysical and electrochemical properties, all the metal complexes were studied for their chemosensing ability. Nowadays with increased use of organophosphate, there is alarming increase of these agents in the environment, and thus we require efficient technique to estimate the level of these agents with high sensitivity and selectivity in aqueous medium. The Ni(2+) complexes with hydrophobic nature were suspended into aqueous medium for testing them as sensor for organophosphate. The (L1)2.(Ni(2+))2 could sense phosmet with detection limit of 44 nM, whereas L2.Ni(2+) and L3.Ni(2+) exhibited the detection limits of 62 and 71 nM, respectively, for chlorpyrifos.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...