Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Saudi J Biol Sci ; 29(2): 854-859, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35197753

RESUMO

INTRODUCTION: Oxidative stress is crucial in diabetic pathophysiology, hence the prerequisite of ingesting naturally derived antioxidants as a remedial target. This study investigates the naturally occurring antioxidant and antidiabetic potential of Moringa oleifera ethanolic leaves extract. METHODS: Moringa oleifera leaves were macerated (MOLE) by using 70% ethanol. Physiochemical and phytochemical examinations of MOLE was assayed using standard methods. The antioxidant activity was analyzed by DPPH (1, 1-diphenyl-2-picrylhydrazil) radical scavenging assay. In vitro antidiabetic was analyzed by pancreatic α-amylase enzyme inhibitory assay. The molecular docking was performed using AutoDock Vina v1.1.2 in PyRx 30.8. RESULTS: Ethanolic extraction of MOLE by maceration technique, 14 % yield. Loss on drying, foreign organic matters and total ash value of OLE showed 0.27 w/w, 0.8 % and 19 %, respectively. Phytochemical test on MOLE confirmed starch, carbohydrate, flavonoid, gum, glycoside, saponin, tannin, and phenol presences. The total phenolic and flavonoid contents of MOLE are 260 mg GAE/g and 755 mg RUE/g of extract. MOLE (IC 50 55.6 ± 0.18 µg/mL) showed functional DPPH scavenging assay comparable to ascorbic acid (IC 50 46.71 ± 0.24 µg/mL). In the alpha-amylase inhibitory activity, Acarbose showed an IC 50 value of 19.45 ± 0.26 µg/mL, while MOLE portrayed an IC 50 value of 27.54 ± 0.07 µg/mL. Docking studies revealed that most phenolic compounds found within MOLE have minimum docking scores and high binding affinity against Human pancreatic alpha-amylase. CONCLUSIONS: The invitro and docking results suggest that MOLE has been a viable natural bioactive source and might be a great potential source for future antidiabetic medicine.

2.
Pharmacogn Mag ; 12(Suppl 4): S424-S430, 2016 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-27761069

RESUMO

OBJECTIVE: To investigate the antihyperlipidemic, antioxidant, and cytotoxic effect of aqueous and methanol extract of leaves of Polygonum minus. MATERIALS AND METHODS: Acute antihyperlipidemic effect was studied on chemically induced hyperlipidemic rat model. Treated groups received aqueous and methanol extract of leaves of P. minus respectively (1000 mg/kg; oral) whereas standard treated group received atorvastatin (60 mg/kg; oral) for 3 consecutive days. Blood samples were collected at fixed intervals for lipid profile analysis. Antioxidant effects were studied using 1,1-diphenyl-2-picrylhydrazyl, 2,2-azinobis 3-ethylbenzothiazoline 6-sulfonate, and ferric reducing antioxidant power assays. The total flavonoids content and total phenolic contents were also estimated. Cytotoxicity of both extracts was studied on one normal and three cancer cell lines using 3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide (MTT) assay method. RESULTS: The methanol extract showed significant reduction in total cholesterol (P < 0.001), triglycerides (P < 0.01), LDL (P < 0.05), VLDL (P < 0.01), atherogenic index (P < 0.001), and elevation of HDL (P < 0.05) levels than the aqueous extract. Similarly, the antioxidant investigations also demonstrated that the methanol extract had higher antioxidant capacity than aqueous extract. Both extracts were not toxic to normal (EA.hy926) as well as to cancer (HCT116, HT29, and HeLa) cells. Significant correlation was demonstrated between total phenolic and total flavonoids contents with the antioxidant activity but not with the antihyperlipidemic effect, suggesting other groups of chemical constituents may be mainly responsible for the antihyperlipidemic effect of this plant. CONCLUSION: The study demonstrated that the presence and extent of bioactivities are influenced by solvents used for extraction. This study confirmed the antihyperlipidemic effect of leaves of P. minus in acute hyperlipidemic rat model. SUMMARY: Polygonum minus is an herbaceous flowering plant.This plant possess high amount of phenolics and flavonoidsThis study focused on the antioxidant, cytotoxicity and antihyperlipidemic effect of aqueous and methanol extracts of leaves of P. minusThe extracts possess significant antioxidant activity and antihyperlipidemic activity but they are not toxic to normal and cancer cells tested.The antioxidant activity is well correlated with phenolic and flavonoids contents but the antihyperlipidemic activity is not correlated with antioxidant effect. Abbreviations used: CVDs: Cardiovascular diseases, LDL: Low-density lipoprotein, DDPH: 1,1-Diphenyl-2-picrylhydrazyl radical, TPTZ: 2,4,6,-tris(1-pyridyl)-5-triazine, ABTS: 2,2'-Azino-di-[3-ethylbenzthiazoline Sulfonate], HDL: High-density lipoprotein, VLDL: Very low-density lipoprotein, TC: Total cholesterol, TG: Triglycerides, EC50: Half maximal effective concentration, LD50: Median lethal dose.

3.
J Basic Clin Pharm ; 5(4): 89-97, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25316988

RESUMO

BACKGROUND: In general, organic solvents are inhibiting many physiological enzymes and alter the behavioural functions, but the available scientific knowledge on laboratory solvent induced organ specific toxins are very limited. Hence, the present study was planned to determine the sub-chronic toxic effects of petroleum ether (boiling point 40-60°C), a laboratory solvent in Sprague-Dawley (SD) rats. MATERIALS AND METHODS: The SD rats were divided into three different groups viz., control, low exposure petroleum ether (250 mg/kg; i.p.) and high exposure petroleum ether (500 mg/kg; i.p.) administered group. The animals were exposed with petroleum ether once daily for 2 weeks. Prior to the experiment and end of the experiment animals behaviour, locomotor and memory levels were monitored. Before initiating the study animals were trained for 2 weeks for its learning process and its memory levels were evaluated. Body weight (BW) analysis, locomotor activity, anxiogenic effect (elevated plus maze) and learning and memory (Morris water navigation task) were monitored at regular intervals. On 14(th) day of the experiment, few ml of blood sample was collected from all the experimental animals for estimation of biochemical parameters. At the end of the experiment, all the animals were sacrificed, and brain, liver, heart, and kidney were collected for biochemical and histopathological analysis. RESULTS: In rats, petroleum ether significantly altered the behavioural functions; reduced the locomotor activity, grip strength, learning and memory process; inhibited the regular body weight growth and caused anxiogenic effects. Dose-dependent organ specific toxicity with petroleum ether treated group was observed in brain, heart, lung, liver, and kidney. Extrapyramidal effects that include piloerection and cannibalism were also observed with petroleum ether administered group. These results suggested that the petroleum ether showed a significant decrease in central nervous system (CNS) activity, and it has dose-dependent toxicity on all vital organs. CONCLUSION: The dose-dependent CNS and organ specific toxicity was observed with sub-chronic administration of petroleum ether in SD rats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...