Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 95(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39037302

RESUMO

Tunnel junctions have long been used to immobilize and study the electronic transport properties of single molecules. The sensitivity of tunneling currents to entities in the tunneling gap has generated interest in developing electronic biosensors with single molecule resolution. Tunnel junctions can, for example, be used for sensing bound or unbound DNA, RNA, amino acids, and proteins in liquids. However, manufacturing technologies for on-chip integrated arrays of tunnel junction sensors are still in their infancy, and scalable measurement strategies that allow the measurement of large numbers of tunneling junctions are required to facilitate progress. Here, we describe an experimental setup to perform scalable, high-bandwidth (>10 kHz) measurements of low currents (pA-nA) in arrays of on-chip integrated tunnel junctions immersed in various liquid media. Leveraging a commercially available compact 100 kHz bandwidth low-current measurement instrument, we developed a custom two-terminal probe on which the amplifier is directly mounted to decrease parasitic probe capacitances to sub-pF levels. We also integrated a motorized three-axis stage, which could be powered down using software control, inside the Faraday cage of the setup. This enabled automated data acquisition on arrays of tunnel junctions without worsening the noise floor despite being inside the Faraday cage. A deliberately positioned air gap in the fluidic path ensured liquid perfusion to the chip from outside the Faraday cage without coupling in additional noise. We demonstrate the performance of our setup using rapid current switching observed in electromigrated gold tunnel junctions immersed in deionized water.

2.
ACS Appl Mater Interfaces ; 16(28): 37131-37146, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38954436

RESUMO

Tunnel junctions have been suggested as high-throughput electronic single molecule sensors in liquids with several seminal experiments conducted using break junctions with reconfigurable gaps. For practical single molecule sensing applications, arrays of on-chip integrated fixed-gap tunnel junctions that can be built into compact systems are preferable. Fabricating nanogaps by electromigration is one of the most promising approaches to realize on-chip integrated tunnel junction sensors. However, the electrical behavior of fixed-gap tunnel junctions immersed in liquid media has not been systematically studied to date, and the formation of electromigrated nanogap tunnel junctions in liquid media has not yet been demonstrated. In this work, we perform a comparative study of the formation and electrical behavior of arrays of gold nanogap tunnel junctions made by feedback-controlled electromigration immersed in various liquid and gaseous media (deionized water, mesitylene, ethanol, nitrogen, and air). We demonstrate that tunnel junctions can be obtained from microfabricated gold nanoconstrictions inside liquid media. Electromigration of junctions in air produces the highest yield (61-67%), electromigration in deionized water and mesitylene results in a lower yield than in air (44-48%), whereas electromigration in ethanol fails to produce viable tunnel junctions due to interfering electrochemical processes. We map out the stability of the conductance characteristics of the resulting tunnel junctions and identify medium-specific operational conditions that have an impact on the yield of forming stable junctions. Furthermore, we highlight the unique challenges associated with working with arrays of large numbers of tunnel junctions in batches. Our findings will inform future efforts to build single molecule sensors using on-chip integrated tunnel junctions.

3.
Nat Commun ; 9(1): 3433, 2018 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-30143636

RESUMO

Break junctions provide tip-shaped contact electrodes that are fundamental components of nano and molecular electronics. However, the fabrication of break junctions remains notoriously time-consuming and difficult to parallelize. Here we demonstrate true parallel fabrication of gold break junctions featuring sub-3 nm gaps on the wafer-scale, by relying on a novel self-breaking mechanism based on controlled crack formation in notched bridge structures. We achieve fabrication densities as high as 7 million junctions per cm2, with fabrication yields of around 7% for obtaining crack-defined break junctions with sub-3 nm gaps of fixed gap width that exhibit electron tunneling. We also form molecular junctions using dithiol-terminated oligo(phenylene ethynylene) (OPE3) to demonstrate the feasibility of our approach for electrical probing of molecules down to liquid helium temperatures. Our technology opens a whole new range of experimental opportunities for nano and molecular electronics applications, by enabling very large-scale fabrication of solid-state break junctions.

4.
Nanoscale ; 9(40): 15515-15524, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28980698

RESUMO

The thermal transport properties of graphene are strongly influenced by its contact environment and the strength of such interactions can be used to tailor these properties. Here we find that annealing suppresses the basal plane thermal conductivity (κ) of graphene supported on silicon dioxide, due to the increased conformity of graphene to the nanoscale asperities of the substrate after annealing. Intriguingly, increasing the polycrystallinity of graphene, grown by chemical vapor deposition on copper, increases the severity of this suppression after annealing, revealing the role of grain boundaries and associated defects in aiding phonon scattering by the substrate. In highly polycrystalline graphene, the value of κ after annealing is comparable to that after significant fluorination of an identical unannealed sample. Our experiments employ the suspended micro-bridge platform for basal plane thermal conductivity measurements. Using xenon difluoride gas for the final release also enables the investigation of thermal transport in graphene in contact with polymers. We find evidence for weaker phonon scattering in graphene, due to a 10 nm thick polymer layer on top compared to the pre-existing silicon dioxide substrate, which is a promising result for flexible electronics applications of graphene.

5.
Nano Lett ; 16(10): 6364-6370, 2016 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-27580070

RESUMO

We report electronic and phononic transport measurements of monocrystalline batch-fabricated silicon nanowire (SiNW) arrays functionalized with different surface chemistries. We find that hydrogen-terminated SiNWs prepared by vapor HF etching of native-oxide-covered devices show increased electrical conductivity but decreased thermal conductivity. We used the kinetic Monte Carlo method to solve the Boltzmann transport equation and also numerically examine the effect of phonon boundary scattering. Surface transfer doping of the SiNWs by cobaltocene or decamethylcobaltocene drastically improves the electrical conductivity by 2 to 4 orders of magnitude without affecting the thermal conductivity. The results showcase surface chemical control of nanomaterials as a potent pathway that can complement device miniaturization efforts in the quest for more efficient thermoelectric materials and devices.

6.
Nanoscale ; 7(21): 9510-9, 2015 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-25947628

RESUMO

Gold nanoparticles with unique electronic, optical and catalytic properties can be efficiently synthesized in colloidal suspensions and are of broad scientific and technical interest and utility. However, their orderly integration on functional surfaces and devices remains a challenge. Here we show that single gold nanoparticles can be directly grown in individually printed, stabilized metal-salt ink attoliter droplets, using a nanoscale electrohydrodynamic printing method with a stable high-frequency dripping mode. This enables controllable sessile droplet nanoreactor formation and sustenance on non-wetting substrates, despite simultaneous rapid evaporation. The single gold nanoparticles can be formed inside such reactors in situ or by subsequent thermal annealing and plasma ashing. With this non-contact technique, single particles with diameters tunable in the range of 5-35 nm and with narrow size distribution, high yield and alignment accuracy are generated on demand and patterned into arbitrary arrays. The nanoparticles feature good catalytic activity as shown by the exemplary growth of silicon nanowires from the nanoparticles and the etching of nanoholes by the printed nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...