Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 89(7): e202300589, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38141164

RESUMO

This work describes the comparison of the catalytic performances of α-MnO2 nanorods synthesized by a facile hydrothermal approach at varying temperatures (140-200 °C). The structure and morphology of these nanorods were analyzed by XRD, N2-physisorption, NH3-TPD, Raman, SEM, HRTEM, and XPS. The prepared α-MnO2 nanorods also performed exceptionally well in the catalytic oxidation of cyclohexanone to dicarboxylic acids under mild reaction conditions. The characterization results conferred that there is a significant influence of hydrothermal temperatures on the textural properties, morphology, and catalytic activity. Notably, the α-MnO2 nanorods obtained from 180 °C hydrothermal conditions outperformed other catalysts with 77.3 % cyclohexanone conversion and 99 % selectivity towards acid products such as adipic acid (AA), glutaric acid (GA) and succinic acid (SA). The improved catalytic activity may be attributed to the interaction of the bifunctional Mn3+/4+ redox metal centres and surface acidic sites. The present oxidation reaction was found to be a promising eco-benign process with high selectivity for the production of commercially significant carboxylic acids from cyclohexanone.

2.
ACS Omega ; 7(36): 32225-32237, 2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36120068

RESUMO

Peculiar physicochemical properties of two-dimensional (2D) nanomaterials have attracted research interest in developing new synthetic technology and exploring their potential applications in the field of catalysis. Moreover, ultrathin metal oxide nanosheets with atomic thickness exhibit abnormal surficial properties because of the unique 2D confinement effect. In this work, we present a facile and general approach for the synthesis of single crystalline and ultrathin 2D nanosheets assembly of scrutinyite-SnO2 through a simple solvothermal method. The structural and compositional characterization using X-ray diffraction (Rietveld refinement analysis), high-resolution transmission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and so on reveal that the as-synthesized 2D nanosheets are ultrathin and single crystallized in the scrutinyite-SnO2 phase with high purity. The ultrathin SnO2 nanosheets show predominant growth in the [011] direction on the main surface having a thickness of ca. 1.3 nm. The SnO2 nanosheets are further employed for the regioselective Friedel-Crafts acylation to synthesize aromatic ketones that have potential significance in chemical industry as synthetic intermediates of pharmaceuticals and fine chemicals. A series of aromatic substrates acylated over the SnO2 nanosheets have afforded the corresponding aromatic ketones with up to 92% yield under solvent-free conditions. Comprehensive catalytic investigations display the SnO2 nanosheet assembly as a better catalytic material compared to the heterogeneous metal oxide catalysts used so far in the view of its activity and reusability in solvent-free reaction conditions.

3.
ACS Omega ; 4(14): 16037-16044, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31592472

RESUMO

The present study elaborates the catalytic effect of rare-earth metal oxides (Sm2O3 and La2O3) over ceria as a support phase transfer catalyst. The synthesized catalysts have been subjected to different characterization techniques, such as field-emission scanning electron microscopy, high-resolution transmission electron microscopy, powder X-ray diffraction, N2 adsorption-desorption (BET surface analysis), temperature-programmed desorption study (NH3/CO2-TPD), Fourier transform infrared, Raman analysis, and X-ray photoelectron spectroscopy to get better insights into the catalytic activity of the catalysts for hydration of nitrile.

4.
Dalton Trans ; 48(32): 12199-12209, 2019 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-31334723

RESUMO

Carbon dioxide is a greenhouse gas, and needs to be converted into one of the useful feedstocks, such as carbon monoxide and methanol. We demonstrate the reduction of CO2 with H2 as a reducing agent, via a reverse water gas shift (RWGS) reaction, by using a potential and low cost Mo2C catalyst. Mo2C was evaluated for CO2 hydrogenation at ambient pressure as a function of temperature, and CO2 : H2 ratio at a gas hourly space velocity (GHSV) of 20 000 h-1. It is demonstrated that the Mo2C catalyst with 1 : 3 ratio of CO2 : H2 is highly active (58% CO2 conversion) and selective (62%) towards CO at 723 K at ambient pressure. Both properties (basicity and redox properties) and high catalytic activity observed with Mo2C around 700 K correlate well and indicate a strong synergy among them towards CO2 activation. X-ray diffraction and Raman analysis show that the Mo2C catalyst remains in the ß-Mo2C form before and after the reaction. The mechanistic aspects of the RWGS reaction were determined by near-ambient pressure X-ray photoelectron spectroscopy (NAPXPS) with in situ generated Mo2C from carburization of Mo-metal foil. NAPXPS measurements were carried out at near ambient pressure (0.1 mbar) and various temperatures. Throughout the reaction, no significant changes in the Mo2+ oxidation state (of Mo2C) were observed indicating that the catalyst is highly stable; C and O 1s spectral results indicate the oxycarbide species as an active intermediate for RWGS. A good correlation is observed between catalytic activity from atmospheric pressure reactors and the electronic structure details derived from NAPXPS results, which establishes the structure-activity correlation.

5.
Nanoscale ; 7(32): 13477-88, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26199221

RESUMO

M-Au/TiO2 (M = Ag, Pd, Pt) composites were prepared through a facile one-pot photodeposition synthesis and evaluated for solar water splitting (SWS) with and without a sacrificial agent. The M-Au combination exhibits a dominant role in augmenting the H2 generation activity by forming a bi-metallic system. Degussa P25 was used as a TiO2 substrate to photodeposit Au followed by Au + M (M = Ag/Pd/Pt). The SWS activity of the M-Au/TiO2 was determined through photocatalytic H2 production in the presence of methanol as a sacrificial agent under one sun conditions with an AM1.5 filter. The highest H2 yield was observed for Pt0.5-Au1/TiO2 and was around 1.3 ± 0.07 mmol h(-1) g(-1), with an apparent quantum yield (AQY) of 6.4%. Pt0.5-Au1/TiO2 also demonstrated the same activity for 25 cycles of five hours each for 125 h. Critically, the same Pt0.5-Au1/TiO2 catalyst was active in overall SWS (OSWS) without any sacrificial agent, with an AQY = 0.8%. The amount of Au and/or Pt was varied to obtain the optimum composition and it was found that the Pt0.5-Au1/TiO2 composition exhibits the best activity. Detailed characterization by physico-chemical, spectral and microscopy measurements was carried out to obtain an in-depth understanding of the origin of the photocatalytic activity of Pt0.5-Au1/TiO2. These in-depth studies show that gold interacts predominantly with oxygen vacancies present on titania surfaces, and Pt preferentially interacts with gold for an effective electron-hole pair separation at Pt-Au interfaces and electron storage in metal particles. The Pt in Pt0.5-Au1/TiO2 is electronically and catalytically different from the Pt in Pt/TiO2 and it is predicted that the former suppresses the oxygen reduction reaction.

6.
Dalton Trans ; 43(5): 2120-6, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24280831

RESUMO

Layered oxides of the series InGaO3(ZnO)m (m = 1-4) are interesting due to their structural anisotropy. Here, we report a comprehensive study of their structural details, focusing on the local cationic environment in bulk powder samples by MASNMR and EXAFS, which is hitherto not attempted. It is found that the Ga geometry varies gradually from pure pentacoordinated to a mixture of penta and tetracoordinated with increasing amounts of tetracoordination as we move across the series, contrary to previous reports suggesting exclusively trigonal bipyramidal coordination in all the compounds. A similar observation is also made in the case of Zn and structural evolution involving the dissolution of Ga in a ZnO4 tetrahedral network in a sandwich layer can be discerned, as the insulating ZnO layer size increases.


Assuntos
Gálio/química , Índio/química , Oxigênio/química , Óxido de Zinco/química , Cátions , Espectroscopia de Ressonância Magnética
7.
J Nanosci Nanotechnol ; 13(4): 2682-8, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23763144

RESUMO

Disordered meso-macro porous Cu-Ce-Al2O3 nanocomposite (gamma-Al(2-x)M(x)O3 +/- y, M = Cu and or Ce) with different compositions has been synthesized. In situ templated sol-gel method has been adopted with simple EDTA ethylenediamine tetra aceticacid and ethylenediamine molecules to prepare gamma-Al(2-x)M(x)O3 +/- y, (M = Cu and or Ce). Above meso-macro porous materials were characterized by structural, spectroscopy, microscopy and textural techniques. Detailed characterization indicates that Cu2+ ions are introduced into the ceria and alumina lattice positions. Nano composite nature of the gamma-Al(2-x)M(x)O3 +/- y has been confirmed by detailed microscopy investigations. Catalytic activity of the above nanocomposite materials have been screened for environmentally important CO oxidation reaction. 30% Ce-60% Al and 10% Cu containing material shows the best activity among other meso-macroporous material with (50%) 100% CO oxidation at (107 degrees C) 145 degrees C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...