Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 5415, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36109503

RESUMO

Chronic activation of stress hormones such as glucocorticoids leads to skeletal muscle wasting in mammals. However, the molecular events that mediate glucocorticoid-induced muscle wasting are not well understood. Here, we show that SIRT6, a chromatin-associated deacetylase indirectly regulates glucocorticoid-induced muscle wasting by modulating IGF/PI3K/AKT signaling. Our results show that SIRT6 levels are increased during glucocorticoid-induced reduction of myotube size and during skeletal muscle atrophy in mice. Notably, overexpression of SIRT6 spontaneously decreases the size of primary myotubes in a cell-autonomous manner. On the other hand, SIRT6 depletion increases the diameter of myotubes and protects them against glucocorticoid-induced reduction in myotube size, which is associated with enhanced protein synthesis and repression of atrogenes. In line with this, we find that muscle-specific SIRT6 deficient mice are resistant to glucocorticoid-induced muscle wasting. Mechanistically, we find that SIRT6 deficiency hyperactivates IGF/PI3K/AKT signaling through c-Jun transcription factor-mediated increase in IGF2 expression. The increased activation, in turn, leads to nuclear exclusion and transcriptional repression of the FoxO transcription factor, a key activator of muscle atrophy. Further, we find that pharmacological inhibition of SIRT6 protects against glucocorticoid-induced muscle wasting in mice by regulating IGF/PI3K/AKT signaling implicating the role of SIRT6 in glucocorticoid-induced muscle atrophy.


Assuntos
Proteínas Proto-Oncogênicas c-akt , Sirtuínas , Animais , Cromatina , Glucocorticoides/farmacologia , Mamíferos/metabolismo , Camundongos , Fibras Musculares Esqueléticas/metabolismo , Atrofia Muscular/induzido quimicamente , Atrofia Muscular/metabolismo , Atrofia Muscular/prevenção & controle , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sirtuínas/genética , Sirtuínas/metabolismo , Somatomedinas/metabolismo , Fatores de Transcrição
2.
Cell Rep ; 35(9): 109190, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34077730

RESUMO

Pathological lipid accumulation is often associated with enhanced uptake of free fatty acids via specific transporters in cardiomyocytes. Here, we identify SIRT6 as a critical transcriptional regulator of fatty acid transporters in cardiomyocytes. We find that SIRT6 deficiency enhances the expression of fatty acid transporters, leading to enhanced fatty acid uptake and lipid accumulation. Interestingly, the haploinsufficiency of SIRT6 is sufficient to induce the expression of fatty acid transporters and cause lipid accumulation in murine hearts. Mechanistically, SIRT6 depletion enhances the occupancy of the transcription factor PPARγ on the promoters of critical fatty acid transporters without modulating the acetylation of histone 3 at Lys 9 and Lys 56. Notably, the binding of SIRT6 to the DNA-binding domain of PPARγ is critical for regulating the expression of fatty acid transporters in cardiomyocytes. Our data suggest exploiting SIRT6 as a potential therapeutic target for protecting the heart from metabolic diseases.


Assuntos
Ácidos Graxos/metabolismo , PPAR gama/metabolismo , Sirtuínas/metabolismo , Transcrição Gênica , Adulto , Animais , Transporte Biológico/genética , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Modelos Animais de Doenças , Feminino , Células HEK293 , Insuficiência Cardíaca/genética , Humanos , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , PPAR gama/química , Regiões Promotoras Genéticas/genética , Domínios Proteicos , Sirtuínas/deficiência , Sirtuínas/genética
3.
Sci Adv ; 7(2)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33523960

RESUMO

Hypertrophic cardiomyopathy (HCM) is a heterogeneous genetic heart muscle disease characterized by hypertrophy with preserved or increased ejection fraction in the absence of secondary causes. However, recent studies have demonstrated that a substantial proportion of individuals with HCM also have comorbid diabetes mellitus (~10%). Whether genetic variants may contribute a combined phenotype of HCM and diabetes mellitus is not known. Here, using next-generation sequencing methods, we identified novel and ultrarare variants in adiponectin receptor 1 (ADIPOR1) as risk factors for HCM. Biochemical studies showed that ADIPOR1 variants dysregulate glucose and lipid metabolism and cause cardiac hypertrophy through the p38/mammalian target of rapamycin and/or extracellular signal-regulated kinase pathways. A transgenic mouse model expressing an ADIPOR1 variant displayed cardiomyopathy that recapitulated the cellular findings, and these features were rescued by rapamycin. Our results provide the first evidence that ADIPOR1 variants can cause HCM and provide new insights into ADIPOR1 regulation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...