Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Orthop Sports Med ; 6(2): 89-106, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39036742

RESUMO

There is mounting evidence to suggest that exogenous electromagnetic fields (EMF) may play a significant role in various biological processes that are crucial to therapeutic interventions. EMFs have been identified as a non-invasive, safe, and effective therapy that appears to have no apparent side effects. Numerous studies have demonstrated that pulsed EMFs (PEMFs) have the potential to become a stand-alone or adjunctive treatment modality for managing musculoskeletal disorders. However, several questions remain unresolved. Before their widespread clinical application, further research from well-designed, high-quality studies is required to standardize treatment parameters and determine the optimal protocol for healthcare decision-making. This article provides a comprehensive overview of the impact of musculoskeletal diseases on overall well-being, the limitations of conventional treatments, and the need to explore alternative therapeutic modalities such as electromagnetic field (EMF) therapy. EMF therapy uses low-frequency electromagnetic waves to stimulate tissue repair, reduce inflammation, and modulate pain signals, making it a safe and convenient alternative to conventional treatments. The article also discusses the historical perspective of EMF therapy in medicine. The article highlights the potential of EMF therapy as a personalized and comprehensive care option for musculoskeletal diseases, either alone or in conjunction with other therapies. It emphasizes the imperative for further research in this field and presents a compelling case for the use of EMF therapy in managing musculoskeletal diseases. Overall, the available findings on the underlying cellular and molecular biology support the use of EMF therapy as a viable option for the management of musculoskeletal disorders and stresses the need for continued research in this area.

2.
J Surg Res (Houst) ; 7(2): 215-228, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38872898

RESUMO

The rotator cuff is a crucial group of muscles and tendons in the shoulder complex that plays a significant role in the stabilization of the glenohumeral joint and enabling a wide range of motion. Rotator cuff tendon tears can occur due to sudden injuries or degenerative processes that develop gradually over time, whether they are partial or full thickness. These injuries are common causes of shoulder pain and functional impairment, and their complex nature highlights the essential role of the rotator cuff in shoulder function. Scar formation is a crucial aspect of the healing process initiated following a rotator cuff tendon tear, but excessive fibrous tissue development can potentially lead to stiffness, discomfort, and movement limitations. Age is a critical risk factor, with the prevalence of these tears increasing among older individuals. This comprehensive review aims to delve deeper into the anatomy and injury mechanisms of the rotator cuff. Furthermore, it will inspect the signaling pathways involved in fibrous tissue development, evaluate the various factors affecting the healing environment, and discuss proactive measures aimed at reducing excessive fibrous tissue formation. Lastly, this review identifed gaps within existing knowledge to advance methods for better management of rotator cuff tendon injuries.

3.
ACS Appl Bio Mater ; 5(4): 1538-1551, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35349268

RESUMO

Electrospun zein membranes are suitable for various biomedical applications. A UV-crosslinked electrospun membrane of a zein/PEO blend for wound healing application was explored in this work. The improvement in mechanical properties of the membrane after UV crosslinking was attributed to the change in protein conformation from an α-helix to a ß-sheet. The circular dichroism (CD) spectra and FTIR spectra confirmed this conformational change. XRD analysis was shown to prove the amorphous nature of polymer blends with specific broad peaks at 2θ = 9° and 20°. The water vapor transmission rate (WVTR) of the membrane was found to be in the range of 1500-2000 g m-2 day-1, which was well suited with that of commercially available wound dressing material. Enough number of available functional groups like thiol, amino, and hydroxyl groups supplement a blood clotting index (BCI) to the matrix, causing 99% BCI within 4 min. A 91% cell viability result in the MTT assay with human dermal fibroblast cells confirmed the noncytotoxicity of the membrane. Tripeptides produced after the thermolysin-based hydrolysis of zein caused inhibition of TGF ß1 expression and thus increased fibroblast and collagen production. The membrane stimulated 54% more collagen production compared to control cells at day 2 and caused 84% wound closure in human dermal fibroblast cells, which were desirable index markers of a potential wound care material.


Assuntos
Zeína , Bandagens , Colágeno , Fibroblastos , Humanos , Cicatrização , Zeína/química
4.
Int J Biol Macromol ; 166: 999-1008, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166555

RESUMO

INTRODUCTION: Development of a tissue-engineered construct for hepatic regeneration remains a challenging task due to the lack of an optimum environment that support the growth of hepatocytes. Hydrogel systems possess many similarities with tissues and have the potential to provide the microenvironment essential for the cells to grow, proliferate, and remain functionally active. METHODS: In this work, fibrin (FIB) incorporated injectable alginate dialdehyde (ADA) - gelatin (G) hydrogel was explored as a matrix for liver tissue engineering. ADA was prepared by periodate oxidation of sodium alginate. An injectable formulation of ADA-G-FIB hydrogel was prepared and characterized by FTIR spectroscopy, Scanning Electron Microscopy, and Micro-Computed Tomography. HepG2 cells were cultured on the hydrogel system; cellular growth and functions were analyzed using various functional markers. RESULTS: FTIR spectra of ADA-G-FIB depicted the formation of Schiff's base at 1608.53 cm-1 with a gelation time of 3 min. ADA-G-FIB depicted a 3D surface topography with a pore size in the range of 100-200 µm. The non-cytotoxic nature of the scaffold was demonstrated using L929 cells and more than 80 % cell viability was observed. Functional analysis of cultured HepG2 cells demonstrated ICG uptake, albumin synthesis, CYP-P450 expression, and ammonia clearance. CONCLUSION: ADA-G-FIB hydrogel can be used as an effective 3D scaffold system for liver tissue engineering.


Assuntos
Alginatos/química , Fibrina/análogos & derivados , Hidrogéis/síntese química , Regeneração Hepática , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Aldeídos/química , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Gelatina/química , Células Hep G2 , Humanos , Hidrogéis/efeitos adversos , Camundongos , Alicerces Teciduais/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...