Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Med Virol ; 96(3): e29559, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38529536

RESUMO

India experienced its sixth Nipah virus (NiV) outbreak in September 2023 in the Kozhikode district of Kerala state. The NiV is primarily transmitted by spillover events from infected bats followed by human-to-human transmission. The clinical specimens were screened using real-time RT-PCR, and positive specimens were further characterized using next-generation sequencing. We describe here an in-depth clinical presentation and management of NiV-confirmed cases and outbreak containment activities. The current outbreak reported a total of six cases with two deaths, with a case fatality ratio of 33.33%. The cases had a mixed presentation of acute respiratory distress syndrome and encephalitis syndrome. Fever was a persistent presentation in all the cases. The Nipah viral RNA was detected in clinical specimens until the post-onset day of illness (POD) 14, with viral load in the range of 1.7-3.3 × 104 viral RNA copies/mL. The genomic analysis showed that the sequences from the current outbreak clustered into the Indian clade similar to the 2018 and 2019 outbreaks. This study highlights the vigilance of the health system to detect and effectively manage the clustering of cases with clinical presentations similar to NiV, which led to early detection and containment activities.


Assuntos
Quirópteros , Infecções por Henipavirus , Vírus Nipah , Animais , Humanos , Infecções por Henipavirus/diagnóstico , Infecções por Henipavirus/epidemiologia , Surtos de Doenças , Vírus Nipah/genética , Índia/epidemiologia , RNA Viral/genética
2.
Ann Med ; 55(2): 2253733, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37672487

RESUMO

BACKGROUND: The multi-country mpox outbreak across the globe has led to the systematic surveillance of mpox cases in India. During the surveillance of mpox, we encountered cases of Varicella Zoster Virus (VZV) in suspected mpox cases amongst children & adults. This study focused on the genomic characterization of VZV in India. METHODS: A total of 331 mpox suspected cases were tested for VZV through real-time PCR, and the positive samples were subjected to next-generation sequencing to retrieve the whole genome of VZV using CLC genomics software. Phylogenetic analysis has been done in MEGA 11.0 software to identify circulating clades. RESULT: Of the 331 suspected cases, 28 cases with vesicular rashes were found to be positive for VZV. The maximum genome could be retrieved from the clinical specimens of 16 cases with coverage greater than 98% when mapped with reference strain Dumas (NC 001348). The phylogenetic analyses of these sequences determined the circulation of clades 1, 5, and 9 in India. Further, the sequence analysis demonstrated non-synonymous single nucleotide polymorphism (SNPs) among specific ORF of VZV including ORF 14, ORF 22, ORF 36, ORF 37 and ORF 51. Although clade 1 and 5 has been reported earlier, the circulation of clade 9 of VZV has been determined for the first time in India. CONCLUSION: Although the circulation of different clades of VZV was reported from India, the presence of clade 9 was detected for the first time during the mpox surveillance.


Assuntos
Herpesvirus Humano 3 , Mpox , Adulto , Criança , Humanos , Herpesvirus Humano 3/genética , Filogenia , Genômica , Índia/epidemiologia
3.
Vector Borne Zoonotic Dis ; 23(6): 341-349, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37184895

RESUMO

Background: A massive outbreak of dengue-like illness was reported from Pune district of Maharashtra, India during May-June 2022. Isolation and characterization of the etiological agent at genomic level for possible mutations that led to higher transmissibility is the topic of the study. Methods: Entomological investigations were carried out by ICMR-National Institute of Virology (Pune, India); Aedes aegypti mosquitoes were collected and processed for virus detection by molecular techniques. Positive mosquito pools were processed for virus isolation in cell culture. Sanger sequencing and whole-genome sequencing (WGS) using Oxford Nanopore Technology platform were used for genomic characterization. Results: Reverse transcriptase RT-PCR and qRT-PCR analysis detected chikungunya virus (CHIKV) in mosquito samples. Six CHIKV isolates were obtained. WGS revealed four nonsynonymous mutations in the structural polyprotein region, and five in the nonstructural polyprotein encoding region when compared with Yawat-2000 and Shivane-2016 strains. Sixty-four nucleotide changes in the nonstructural polyprotein region and 35 in the structural polyprotein region were detected. One isolate had an exclusive amino acid change, T1123I, in the nsP2 (protease) region. Conclusion: Abundant Ae. aegypti breeding and detection of CHIKV RNA in mosquitoes confirmed it as a chikungunya outbreak. Novel mutations detected in the epidemic strain warrants investigations to address their role in disease severity, transmission, and fitness.


Assuntos
Aedes , Febre de Chikungunya , Vírus Chikungunya , Animais , Vírus Chikungunya/genética , Índia/epidemiologia , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/veterinária , Genômica , Surtos de Doenças , Sequenciamento de Nucleotídeos em Larga Escala/veterinária , Poliproteínas/genética , Mosquitos Vetores
4.
J Virol Methods ; 226: 60-6, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26478540

RESUMO

To develop reverse genetics system of RNA viruses, cloning of full-length viral genome is required which is often challenging due to many steps involved. In this study, we report cloning of full-length cDNA from an Indian field isolate (CSFV/IVRI/VB-131) of classical swine fever virus (CSFV) using in vitro overlap extension PCR and recombination which drastically reduced the number of cloning steps. The genome of CSFV was amplified in six overlapping cDNA fragments, linked by overlap extension PCR and cloned in a bacterial artificial chromosome (BAC) vector using in vitro recombination method to generate full-length cDNA clone. The full-length CSFV cDNA clone was found stable in E. coli Stellar and DH10B cells. The full-length RNA was transcribed in vitro using T7 RNA polymerase and transfected in PK15 cells using Neon-tip electroporator to rescue infectious CSFV. The progeny CSFV was propagated in PK15 cells and found indistinguishable from the parent virus. The expression of CSFV proteins were detected in cytoplasm of PK15 cells infected with progeny CSFV at 72 h post-infection. We concluded that the in vitro overlap extension PCR and recombination method is useful to construct stable full-length cDNA clone of RNA virus in BAC vector.


Assuntos
Vírus da Febre Suína Clássica/genética , Clonagem Molecular , Animais , Linhagem Celular , Cromossomos Artificiais Bacterianos , DNA Complementar , Índia , Suínos , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...