Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 14(2)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38398715

RESUMO

The comment titled "Factors related to Bacillus thuringiensis and gut physiology" disputes some of the inferences in the paper "An Alkaline Foregut Protects Herbivores from Latex in Forage, but Increases Their Susceptibility to Bt Endotoxin" published in this journal. The key points in the dissent are the following: 1. Bt is generally safe to non-target species. 2. Transgenic Bt crops provide additional ecological benefits due to reductions in conventional pesticide use. 3. Susceptibility to Bt does not indicate alkalinity, nor vice versa. My response is summarized as follows: 1. Bt can form non-specific pores at concentrations of 100 ng/mL in culture, and so is potentially unsafe for animals with gut environments in which Bt persists at or above this level. 2. Initial reductions in insecticide applications have not been sustained and are even increasing in areas planted with transgenic Bt cotton. 3. Acidic guts degrade Bt more efficiently, but I concede that gut alkalinity does not imply susceptibility to Bt due to many factors including resistance in target species, toxin heterogeneity and variable modes of action. However, the susceptibility of foregut-fermenting herbivores with alkaline guts to Bt intoxication cannot be invalidated without further study.

2.
Life (Basel) ; 13(11)2023 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-38004335

RESUMO

About 10% of angiosperms, an estimated 20,000 species, produce latex from ubiquitous isoprene precursors. Latex, an aqueous suspension of rubber particles and other compounds, functions as an antifeedant and herbivory deterrent. It is soluble in neutral to alkaline pH, and coagulates in acidic environments. Here, I propose that foregut-fermenting herbivores such as ruminants, kangaroos, sloths, insect larvae, and tadpoles have adapted to latex in forage with the evolution of alkaline anterior digestive chamber(s). However, they consequently become susceptible to the action of Bacillus thuringiensis (Bt) δ-endotoxin and related bioinsecticides which are activated in alkaline environments. By contrast, hindgut-fermenting herbivores, such as horses and rabbits, have acidic anterior digestive chambers, in which latex coagulates and may cause gut blockage, but in which Bt is not activated. The latex-adapted foregut herbivore vs. latex-maladapted hindgut herbivore hypothesis developed in this paper has implications for hindgut-fermenting livestock and zoo animals which may be provided with latex-containing forage that is detrimental to their gut health. Further, ruminants and herbivorous tadpoles with alkaline anterior chambers are at risk of damage by the supposedly "environmentally friendly" Bt bioinsecticide, which is widely disseminated or engineered into crops which may enter animal feed streams.

3.
Plant Sci ; 184: 83-101, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22284713

RESUMO

Recombinant protein production in microbial hosts and animal cell cultures has revolutionized the pharmaceutical and industrial enzyme industries. Plants as alternative hosts for the production of recombinant proteins are being actively pursued, taking advantage of their unique characteristics. The key to cost-efficient production in any system is the level of protein accumulation, which is inversely proportional to the cost. Levels of up to 5 g/kg biomass have been obtained in plants, making this production system competitive with microbial hosts. Increasing protein accumulation at the cellular level by varying host, germplasm, location of protein accumulation, and transformation procedure is reviewed. At the molecular level increased expression by improving transcription, translation and accumulation of the protein is critically evaluated. The greatest increases in protein accumulation will occur when various optimized parameters are more fully integrated with each other. Because of the complex nature of plants, this will take more time and effort to accomplish than has been the case for the simpler unicellular systems. However the potential for plants to become one of the major avenues for protein production appears very promising.


Assuntos
Plantas/metabolismo , Proteínas Recombinantes/biossíntese , Plantas/genética , Plantas Geneticamente Modificadas , Proteínas Recombinantes/economia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...