Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (66): e4246, 2012 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-22929552

RESUMO

The modification of virus particles has received a significant amount of attention for its tremendous potential for impacting gene therapy, oncolytic applications and vaccine development. Current approaches to modifying viral surfaces, which are mostly genetics-based, often suffer from attenuation of virus production, infectivity and cellular transduction. Using chemoselective click chemistry, we have developed a straightforward alternative approach which sidesteps these issues while remaining both highly flexible and accessible. The goal of this protocol is to demonstrate the effectiveness of using bioorthogonal click chemistry to modify the surface of adenovirus type 5 particles. This two-step process can be used both therapeutically or analytically, as it allows for chemoselective ligation of targeting molecules, dyes or other molecules of interest onto proteins pre-labeled with azide tags. The three major advantages of this method are that (1) metabolic labeling demonstrates little to no impact on viral fitness, (2) a wide array of effector ligands can be utilized, and (3) it is remarkably fast, reliable and easy to access. In the first step of this procedure, adenovirus particles are produced bearing either azidohomoalanine (Aha, a methionine surrogate) or the unnatural sugar O-linked N-azidoacetylglucosamine (O-GlcNAz), both of which contain the azide (-N3) functional group. After purification of the azide-modified virus particles, an alkyne probe containing the fluorescent TAMRA moiety is ligated in a chemoselective manner to the pre-labeled proteins or glycoproteins. Finally, an SDS-PAGE analysis is performed to demonstrate the successful ligation of the probe onto the viral capsid proteins. Aha incorporation is shown to label all viral capsid proteins (Hexon, Penton and Fiber), while O-GlcNAz incorporation results in labeling of Fiber only. In this evolving field, multiple methods for azide-alkyne ligation have been successfully developed; however only the two we have found to be most convenient are demonstrated herein - strain-promoted azide-alkyne cycloaddition (SPAAC) and copper-catalyzed azide-alkyne cycloaddition (CuAAC) under deoxygenated atmosphere.


Assuntos
Adenoviridae/química , Química Click/métodos , Vírion/química , Azidas/química , Células HEK293 , Humanos , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...