Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
World J Gastrointest Pathophysiol ; 2(1): 1-14, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21607160

RESUMO

Curcumin, also known as diferuloylmethane, is derived from the plant Curcuma longa and is the active ingredient of the spice turmeric. The therapeutic activities of curcumin for a wide variety of diseases such as diabetes, allergies, arthritis and other chronic and inflammatory diseases have been known for a long time. More recently, curcumin's therapeutic potential for preventing and treating various cancers is being recognized. As curcumin's therapeutic promise is being explored more systematically in various diseases, it has become clear that, due to its increased bioavailability in the gastrointestinal tract, curcumin may be particularly suited to be developed to treat gastrointestinal diseases. This review summarizes some of the current literature of curcumin's anti-inflammatory, anti-oxidant and anti-cancer potential in inflammatory bowel diseases, hepatic fibrosis and gastrointestinal cancers.

2.
Biomaterials ; 32(25): 5906-14, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21601921

RESUMO

Curcumin, a hydrophobic polyphenol, is an extract of turmeric root with antioxidant, anti-inflammatory and anti-tumorigenic properties. Its lack of water solubility and relatively low bioavailability set major limitations for its therapeutic use. In this study, a self-assembling peptide hydrogel is demonstrated to be an effective vehicle for the localized delivery of curcumin over sustained periods of time. The curcumin-hydrogel is prepared in-situ where curcumin encapsulation within the hydrogel network is accomplished concurrently with peptide self-assembly. Physical and in vitro biological studies were used to demonstrate the effectiveness of curcumin-loaded ß-hairpin hydrogels as injectable agents for localized curcumin delivery. Notably, rheological characterization of the curcumin-loaded hydrogel before and after shear flow have indicated solid-like properties even at high curcumin payloads. In vitro experiments with a medulloblastoma cell line confirm that the encapsulation of the curcumin within the hydrogel does not have an adverse effect on its bioactivity. Most importantly, the rate of curcumin release and its consequent therapeutic efficacy can be conveniently modulated as a function of the concentration of the MAX8 peptide.


Assuntos
Curcumina/administração & dosagem , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Hidrogéis , Peptídeos , Dicroísmo Circular , Microscopia Eletrônica de Transmissão , Reologia
3.
BMC Cancer ; 11: 144, 2011 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-21501498

RESUMO

BACKGROUND: Medulloblastoma is the most common brain tumor in children, and its prognosis is worse than for many other common pediatric cancers. Survivors undergoing treatment suffer from serious therapy-related side effects. Thus, it is imperative to identify safer, effective treatments for medulloblastoma. In this study we evaluated the anti-cancer potential of curcumin in medulloblastoma by testing its ability to induce apoptosis and inhibit tumor growth in vitro and in vivo using established medulloblastoma models. METHODS: Using cultured medulloblastoma cells, tumor xenografts, and the Smo/Smo transgenic medulloblastoma mouse model, the antitumor effects of curcumin were tested in vitro and in vivo. RESULTS: Curcumin induced apoptosis and cell cycle arrest at the G2/M phase in medulloblastoma cells. These effects were accompanied by reduced histone deacetylase (HDAC) 4 expression and activity and increased tubulin acetylation, ultimately leading to mitotic catastrophe. In in vivo medulloblastoma xenografts, curcumin reduced tumor growth and significantly increased survival in the Smo/Smo transgenic medulloblastoma mouse model. CONCLUSIONS: The in vitro and in vivo data suggest that curcumin has the potential to be developed as a therapeutic agent for medulloblastoma.


Assuntos
Antineoplásicos/farmacologia , Neoplasias Cerebelares/tratamento farmacológico , Curcumina/farmacologia , Histona Desacetilases/metabolismo , Meduloblastoma/tratamento farmacológico , Proteínas Repressoras/metabolismo , Acetilação/efeitos dos fármacos , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Apoptose/genética , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/genética , Linhagem Celular Tumoral , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Curcumina/uso terapêutico , Histona Desacetilases/genética , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Camundongos , Camundongos Transgênicos , Receptores Acoplados a Proteínas G/genética , Proteínas Repressoras/genética , Receptor Smoothened , Tubulina (Proteína)/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Exp Cell Res ; 317(6): 838-48, 2011 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-21211535

RESUMO

High levels of the soluble form of E-cadherin can be found in the serum of cancer patients and are associated with poor prognosis. Despite the possible predictive value of soluble E-cadherin, little is understood concerning its patho-physiological consequences in tumor progression. In this study, we show that soluble E-cadherin facilitates cell survival via functional interaction with cellular E-cadherin. Exposure of cells to a recombinant form of soluble E-cadherin, at a concentration found in cancer patient's serum, prevents apoptosis due to serum/growth factor withdrawal, and inhibits epithelial lumen formation, a process that requires apoptosis. Further, soluble E-cadherin-mediated cell survival involves activation of the epidermal growth factor receptor (EGFR) and EGFR-mediated activation of both phosphoinositide-3 kinase (PI3K)/AKT and ERK1/2 signaling pathways. These results are evidence of a complex functional interplay between EGFR and E-cadherin and also suggest that the presence of soluble E-cadherin in cancer patients' sera might have relevance to cell survival and tumor progression.


Assuntos
Apoptose/efeitos dos fármacos , Caderinas/farmacologia , Receptores ErbB/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Caderinas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células HEK293 , Humanos , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Proteína Oncogênica v-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Solubilidade
5.
Mol Cancer Ther ; 9(6): 1515-24, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20501797

RESUMO

Epithelial-to-mesenchymal transition (EMT) is an important developmental process, participates in tissue repair, and occurs during pathologic processes of tumor invasiveness, metastasis, and tissue fibrosis. The molecular mechanisms leading to EMT are poorly understood. Although it is well documented that transforming growth factor (TGF)-beta plays a central role in the induction of EMT, the targets of TGF-beta signaling are poorly defined. We have shown earlier that Na,K-ATPase beta(1)-subunit levels are highly reduced in poorly differentiated kidney carcinoma cells in culture and in patients' tumor samples. In this study, we provide evidence that Na,K-ATPase is a new target of TGF-beta(1)-mediated EMT in renal epithelial cells, a model system used in studies of both cancer progression and fibrosis. We show that following treatment with TGF-beta(1), the surface expression of the beta(1)-subunit of Na,K-ATPase is reduced, before well-characterized EMT markers, and is associated with the acquisition of a mesenchymal phenotype. RNAi-mediated knockdown confirmed the specific involvement of the Na,K-ATPase beta(1)-subunit in the loss of the epithelial phenotype and exogenous overexpression of the Na,K-ATPase beta(1)-subunit attenuated TGF-beta(1)-mediated EMT. We further show that both Na,K-ATPase alpha- and beta-subunit levels are highly reduced in renal fibrotic tissues. These findings reveal for the first time that Na,K-ATPase is a target of TGF-beta(1)-mediated EMT and is associated with the progression of EMT in cancer and fibrosis.


Assuntos
Biomarcadores Tumorais/metabolismo , Epitélio/patologia , Mesoderma/patologia , Neoplasias/enzimologia , Neoplasias/patologia , Subunidades Proteicas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Diferenciação Celular/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/enzimologia , Epitélio/enzimologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fibrose , Técnicas de Silenciamento de Genes , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Túbulos Renais Proximais/citologia , Células LLC-PK1 , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mesoderma/enzimologia , Fenótipo , Sódio/metabolismo , Suínos , Fator de Crescimento Transformador beta/farmacologia
6.
Proc Natl Acad Sci U S A ; 107(14): 6459-64, 2010 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-20308550

RESUMO

The phosphatase and tensin homolog (PTEN) is a tumor suppressor that is inactivated in many human cancers. PTEN loss has been associated with resistance to inhibitors of the epidermal growth factor receptor (EGFR), but the molecular basis of this resistance is unclear. It is believed that unopposed phosphatidylinositol-3-kinase (PI3K) activation through multiple receptor tyrosine kinases (RTKs) can relieve PTEN-deficient cancers from their "dependence" on EGFR or any other single RTK for survival. Here we report a distinct resistance mechanism whereby PTEN inactivation specifically raises EGFR activity by impairing the ligand-induced ubiquitylation and degradation of the activated receptor through destabilization of newly formed ubiquitin ligase Cbl complexes. PTEN-associated resistance to EGFR kinase inhibitors is phenocopied by expression of dominant negative Cbl and can be overcome by more complete EGFR kinase inhibition. PTEN inactivation does not confer resistance to inhibitors of the MET or PDGFRA kinase. Our study identifies a critical role for PTEN in EGFR signal termination and suggests that more potent EGFR inhibition should overcome resistance caused by PI3K pathway activation.


Assuntos
Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Animais , Apoptose , Linhagem Celular , Ativação Enzimática , Humanos , Camundongos , Camundongos Knockout , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/genética , Ligação Proteica , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Interferência de RNA , Transdução de Sinais/efeitos dos fármacos , Ubiquitinação
7.
J Mol Cell Cardiol ; 47(4): 552-60, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19683723

RESUMO

Na,K-ATPase is composed of two essential alpha- and beta-subunits, both of which have multiple isoforms. Evidence indicates that the Na,K-ATPase enzymatic activity as well as its alpha(1), alpha(3) and beta(1) isoforms are reduced in the failing human heart. The catalytic alpha-subunit is the receptor for cardiac glycosides such as digitalis, used for the treatment of congestive heart failure. The role of the Na,K-ATPase beta(1)-subunit (Na,K-beta(1)) in cardiac function is not known. We used Cre/loxP technology to inactivate the Na,K-beta(1) gene exclusively in the ventricular cardiomyocytes. Animals with homozygous Na,K-beta(1) gene excision were born at the expected Mendelian ratio, grew into adulthood, and appeared to be healthy until 10 months of age. At 13-14 months, these mice had 13% higher heart/body weight ratios, and reduced contractility as revealed by echocardiography compared to their wild-type (WT) littermates. Pressure overload by transverse aortic constriction (TAC) in younger mice, resulted in compensated hypertrophy in WT mice, but decompensation in the Na,K-beta(1) KO mice. The young KO survivors of TAC exhibited decreased contractile function and mimicked the effects of the Na,K-beta(1) KO in older mice. Further, we show that intact hearts of Na,K-beta(1) KO anesthetized mice as well as isolated cardiomyocytes were insensitive to ouabain-induced positive inotropy. This insensitivity was associated with a reduction in NCX1, one of the proteins involved in regulating cardiac contractility. In conclusion, our results demonstrate that Na,K-beta(1) plays an essential role in regulating cardiac contractility and that its loss is associated with significant pathophysiology of the heart.


Assuntos
Deleção de Genes , Contração Miocárdica/efeitos dos fármacos , Miocárdio/enzimologia , Ouabaína/farmacologia , Subunidades Proteicas/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Envelhecimento/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Cardiomegalia/enzimologia , Cardiomegalia/fisiopatologia , Separação Celular , Testes de Função Cardíaca , Immunoblotting , Camundongos , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Especificidade de Órgãos/efeitos dos fármacos , Pressão , Trocador de Sódio e Cálcio/metabolismo
8.
Front Biosci (Landmark Ed) ; 14(6): 2130-48, 2009 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-19273189

RESUMO

Tight junctions are unique organelles in polarized epithelial and endothelial cells that regulate the flow of solutes and ions across the epithelial barrier. The structure and functions of tight junctions are regulated by a wide variety of signaling and molecular mechanisms. Several recent studies in mammals, drosophila, and zebrafish reported a new role for Na,K-ATPase, a well-studied ion transporter, in the modulation of tight junction development, permeability, and polarity. In this review, we have attempted to compile these new reports and suggest a model for a conserved role of Na,K-ATPase in the regulation of tight junction structure and functions.


Assuntos
ATPase Trocadora de Sódio-Potássio/metabolismo , Junções Íntimas/enzimologia , Humanos
9.
Mol Cancer Ther ; 7(7): 2142-51, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18645024

RESUMO

Prostate-specific membrane antigen (PSMA) is a transmembrane protein highly expressed in advanced and metastatic prostate cancers. The pathologic consequence of elevated PSMA expression in not known. Here, we report that PSMA is localized to a membrane compartment in the vicinity of mitotic spindle poles and associates with the anaphase-promoting complex (APC). PSMA-expressing cells prematurely degrade cyclin B and exit mitosis due to increased APC activity and incomplete inactivation of APC by the spindle assembly checkpoint. Further, expression of PSMA in a karyotypically stable cell line induces aneuploidy. Thus, these findings provide the first evidence that PSMA has a causal role in the induction of aneuploidy and might play an etiologic role in the progression of prostate cancer.


Assuntos
Instabilidade Cromossômica , Antígeno Prostático Específico/metabolismo , Complexos Ubiquitina-Proteína Ligase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase , Animais , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Centrossomo/efeitos dos fármacos , Centrossomo/ultraestrutura , Instabilidade Cromossômica/efeitos dos fármacos , Ciclina B/metabolismo , Ciclina B1 , Cães , Humanos , Nocodazol/farmacologia , Antígeno Prostático Específico/ultraestrutura , Ligação Proteica/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Fuso Acromático/metabolismo
10.
Mol Cancer Ther ; 7(6): 1386-97, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18566211

RESUMO

Loss of alpha-catenin is one of the characteristics of prostate cancer. The catenins (alpha and beta) associated with E-cadherin play a critical role in the regulation of cell-cell adhesion. Tyrosine phosphorylation of beta-catenin dissociates it from E-cadherin and facilitates its entry into the nucleus, where beta-catenin acts as a transcriptional activator inducing genes involved in cell proliferation. Thus, beta-catenin regulates cell-cell adhesion and cell proliferation. Mechanisms controlling the balance between these functions of beta-catenin invariably are altered in cancer. Although a wealth of information is available about beta-catenin deregulation during oncogenesis, much less is known about how or whether alpha-catenin regulates beta-catenin functions. In this study, we show that alpha-catenin acts as a switch regulating the cell-cell adhesion and proliferation functions of beta-catenin. In alpha-catenin-null prostate cancer cells, reexpression of alpha-catenin increased cell-cell adhesion and decreased beta-catenin transcriptional activity, cyclin D1 levels, and cell proliferation. Further, Src-mediated tyrosine phosphorylation of beta-catenin is a major mechanism for decreased beta-catenin interaction with E-cadherin in alpha-catenin-null cells. alpha-Catenin attenuated the effect of Src phosphorylation by increasing beta-catenin association with E-cadherin. We also show that alpha-catenin increases the sensitivity of prostate cancer cells to a Src inhibitor in suppressing cell proliferation. This study reveals for the first time that alpha-catenin is a key regulator of beta-catenin transcriptional activity and that the status of alpha-catenin expression in tumor tissues might have prognostic value for Src targeted therapy.


Assuntos
Proteínas Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Transdução de Sinais , alfa Catenina/metabolismo , beta Catenina/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Núcleo Celular/ultraestrutura , Proliferação de Células , Ciclina D1/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Junções Intercelulares/metabolismo , Junções Intercelulares/ultraestrutura , Masculino , Fosforilação , Transcrição Gênica , beta Catenina/genética
11.
Biochim Biophys Acta ; 1778(3): 757-69, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18086552

RESUMO

Tight junctions are unique organelles in epithelial cells. They are localized to the apico-lateral region and essential for the epithelial cell transport functions. The paracellular transport process that occurs via tight junctions is extensively studied and is intricately regulated by various extracellular and intracellular signals. Fine regulation of this transport pathway is crucial for normal epithelial cell functions. Among factors that control tight junction permeability are ions and their transporters. However, this area of research is still in its infancy and much more needs to be learned about how these molecules regulate tight junction structure and functions. In this review we have attempted to compile literature on ion transporters and channels involved in the regulation of tight junctions.


Assuntos
Junções Íntimas/fisiologia , Animais , Células Epiteliais/fisiologia , Células Epiteliais/ultraestrutura , Humanos , Canais Iônicos/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/fisiologia , Modelos Biológicos , Modelos Moleculares , Comunicação Parácrina , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/fisiologia , Junções Íntimas/ultraestrutura
12.
J Urol ; 179(1): 338-45, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18006011

RESUMO

PURPOSE: Na,K-adenosine triphosphatase, which is composed of a catalytic alpha-subunit and a regulatory beta-subunit, generates an electrochemical gradient across the plasma membrane. Previous studies demonstrated altered Na,K-adenosine triphosphatase subunit expression in renal clear cell carcinoma and an association of subunit levels with the prediction of recurrent bladder cancer. We determined the clinical association of protein expression patterns of the Na,K-adenosine triphosphatase alpha1 and beta1-subunits in renal clear cell carcinoma using tissue microarrays with linked clinicopathological data. MATERIALS AND METHODS: The UCLA kidney cancer tissue microarray was used to investigate the protein expression of Na,K-adenosine triphosphatase alpha1 and beta1-subunits by immunohistochemistry in 342 patients with renal clear cell carcinoma who were treated with radical nephrectomy. Of these patients clinical outcomes studies were performed in 317. The resultant expression reactivity was correlated with clinicopathological variables. RESULTS: We found that the alpha1-subunit was a significant and independent predictor of disease specific death from renal clear cell carcinoma on multivariate Cox proportional hazards analysis that included established prognostic factors Eastern Cooperative Oncology Group performance status, pT status, metastasis status and tumor grade. Significance was found when examining all patients with clear cell renal cell carcinoma as well as patient substrata with low or high grade tumors and localized or metastatic disease, suggesting that the Na,K-adenosine triphosphatase alpha1-subunit could be used as a new prognosticator for disease specific death from renal clear cell carcinoma. CONCLUSIONS: These results suggest that Na,K-adenosine triphosphatase alpha1-subunit expression patterns may be a useful clinical prognosticator for renal clear cell carcinoma. The Na,K-adenosine triphosphatase beta1-subunit was not found to be a useful prognosticator in this setting.


Assuntos
Biomarcadores Tumorais/biossíntese , Carcinoma de Células Renais/enzimologia , Carcinoma de Células Renais/mortalidade , Neoplasias Renais/enzimologia , Neoplasias Renais/mortalidade , ATPase Trocadora de Sódio-Potássio/biossíntese , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Taxa de Sobrevida
13.
J Mol Biol ; 365(3): 706-14, 2007 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-17078968

RESUMO

Na,K-ATPase is a hetero-oligomer of alpha and beta-subunits. The Na,K-ATPase beta-subunit (Na,K-beta) is involved in both the regulation of ion transport activity, and in cell-cell adhesion. By structure prediction and evolutionary analysis, we identified two distinct faces on the Na,K-beta transmembrane domain (TMD) that could mediate protein-protein interactions: a glycine zipper motif and a conserved heptad repeat. Here, we show that the heptad repeat face is involved in the hetero-oligomeric interaction of Na,K-beta with Na,K-alpha, and the glycine zipper face is involved in the homo-oligomerization of Na,K-beta. Point mutations in the heptad repeat motif reduced Na,K-beta binding to Na,K-alpha, and Na,K-ATPase activity. Na,K-beta TMD homo-oligomerized in biological membranes, and mutation of the glycine zipper motif affected oligomerization and cell-cell adhesion. These results provide a structural basis for understanding how Na,K-beta links ion transport and cell-cell adhesion.


Assuntos
Modelos Moleculares , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/metabolismo , Sequência de Aminoácidos , Animais , Agregação Celular , Membrana Celular/enzimologia , Cães , Glicina/genética , Leucina/genética , Dados de Sequência Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutação/genética , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Sequências Repetitivas de Aminoácidos
14.
Am J Physiol Gastrointest Liver Physiol ; 292(1): G124-33, 2007 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16959951

RESUMO

Tight junctions are crucial for maintaining the polarity and vectorial transport functions of epithelial cells. We and others have shown that Na-K-ATPase plays a key role in the organization and permeability of tight junctions in mammalian cells and analogous septate junctions in Drosophila. However, the mechanism by which Na-K-ATPase modulates tight junctions is not known. In this study, using a well-differentiated human pancreatic epithelial cell line HPAF-II, we demonstrate that Na-K-ATPase is present at the apical junctions and forms a complex with protein phosphatase-2A, a protein known to be present at tight junctions. Inhibition of Na-K-ATPase ion transport function reduced protein phosphatase-2A activity, hyperphosphorylated occludin, induced rearrangement of tight junction strands, and increased permeability of tight junctions to ionic and nonionic solutes. These data suggest that Na-K-ATPase is required for controlling the tight junction gate function.


Assuntos
Células Epiteliais/fisiologia , Proteínas de Membrana/metabolismo , Pâncreas/citologia , Pâncreas/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Junções Íntimas/fisiologia , Caderinas/metabolismo , Linhagem Celular , Inibidores Enzimáticos/farmacologia , Técnica de Fratura por Congelamento , Humanos , Microscopia Confocal , Microscopia Imunoeletrônica , Ocludina , Pâncreas/ultraestrutura , Fosfoproteínas/metabolismo , Fosforilação , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/ultraestrutura , Proteína da Zônula de Oclusão-1
15.
Microvasc Res ; 72(1-2): 54-61, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16713605

RESUMO

Prostate-specific membrane antigen (PSMA) is a transmembrane protein with a highly restricted profile of expression. Expression is primarily limited to secretory cells of the prostatic epithelium, with elevated levels observed in prostate cancer. As an integral membrane protein correlated with prostate cancer, PSMA offers a potentially valuable target for immunotherapy. PSMA is also detected in the neovasculature of a variety of solid tumors but not in the endothelial cells of preexisting blood vessels. Although the significance of PSMA expression in these cells remains elusive, this pattern of expression implies that PSMA may perform a functional role in angiogenesis and may offer a therapeutic target for the treatment of a broad spectrum of solid tumors. In this study, we have expressed PSMA in human microvascular endothelial cells and demonstrate that PSMA binds to caveolin-1 and undergoes internalization via a caveolae-dependent mechanism. The association between PSMA and caveolae in endothelial cells may provide important insight into PSMA function and ways to best exploit this protein for therapeutic benefit.


Assuntos
Antígenos de Superfície/biossíntese , Caveolina 1/biossíntese , Endotélio Vascular/metabolismo , Regulação da Expressão Gênica , Glutamato Carboxipeptidase II/biossíntese , Microcirculação , Neoplasias/irrigação sanguínea , Neovascularização Patológica , Antígenos de Superfície/química , Biotinilação , Células Cultivadas , Centrifugação com Gradiente de Concentração , Glutamato Carboxipeptidase II/química , Glicosídeo Hidrolases/metabolismo , Humanos , Microscopia Confocal , Pele/citologia
16.
J Biol Chem ; 281(15): 9837-40, 2006 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-16469747

RESUMO

Estrogen receptor-alpha (ERalpha) promotes proliferation of breast cancer cells, whereas tumor suppressor protein p53 impedes proliferation of cells with genomic damage. Whether there is a direct link between these two antagonistic pathways has remained unclear. Here we report that ERalpha binds directly to p53 and represses its function. The activation function-2 (AF-2) domain of ERalpha and the C-terminal regulatory domain of p53 are necessary for the interaction. Knocking down p53 and ERalpha by small interfering RNA elicits opposite effects on p53-target gene expression and cell cycle progression. Remarkably, ionizing radiation that causes genomic damage disrupts the interaction between ERalpha and p53. Ionizing radiation together with ERalpha knock down results in additive effect on transcription of endogenous p53-target gene p21 (CDKN1) in human breast cancer cells. Our findings reveal a novel mechanism for regulating p53 and suggest that suppressing p53 function is an important component in the pro-proliferative role of ERalpha.


Assuntos
Receptor alfa de Estrogênio/fisiologia , Regulação Neoplásica da Expressão Gênica , Proteína Supressora de Tumor p53/metabolismo , Neoplasias da Mama/metabolismo , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Imunoprecipitação da Cromatina , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Receptor alfa de Estrogênio/metabolismo , Genes p53 , Humanos , Immunoblotting , Imunoprecipitação , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno/metabolismo , Radiação Ionizante , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Ativação Transcricional , Transfecção , Transgenes
17.
Semin Nephrol ; 25(5): 328-34, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16139688

RESUMO

The Na,K-adenosine triphosphatase (ATPase), or sodium pump, has been well studied for its role in the regulation of ion homeostasis in mammalian cells. Recent studies suggest that Na,K-ATPase might have multiple functions such as a role in the regulation of tight junction structure and function, induction of polarity, regulation of actin dynamics, control of cell movement, and cell signaling. These functions appear to be modulated by Na,K-ATPase enzyme activity as well as protein-protein interactions of the alpha and beta subunits. In this review we attempt to differentiate functions associated with enzyme activity and subunit interactions. In addition, the consequence of impaired Na,K-ATPase function or reduced subunit expression levels in kidney diseases such as cancer, tubulointerstitial fibrosis, and ischemic nephropathy are discussed.


Assuntos
Células Epiteliais/enzimologia , ATPase Trocadora de Sódio-Potássio/fisiologia , Animais , Permeabilidade da Membrana Celular/fisiologia , Movimento Celular/fisiologia , Citoesqueleto/fisiologia , Humanos , Rim/citologia , Nefropatias/metabolismo , Nefropatias/fisiopatologia , Transdução de Sinais/fisiologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Fibras de Estresse/enzimologia
18.
Mol Cancer Ther ; 4(5): 704-14, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15897234

RESUMO

Prostate-specific membrane antigen (PSMA) is an important biomarker expressed in prostate cancer cells with levels proportional to tumor grade. The membrane association and correlation with disease stage portend a promising role for PSMA as an antigenic target for antibody-based therapies. Successful application of such modalities necessitates a detailed knowledge of the subcellular localization and trafficking of target antigen. In this study, we show that PSMA is expressed predominantly in the apical plasma membrane in epithelial cells of the prostate gland and in well-differentiated Madin-Darby canine kidney cells. We show that PSMA is targeted directly to the apical surface and that sorting into appropriate post-Golgi vesicles is dependent upon N-glycosylation of the protein. Integrity of the microtubule cytoskeleton is also essential for delivery and retention of PSMA at the apical plasma membrane domain, as destabilization of microtubules with nocodazole or commonly used chemotherapeutic Vinca alkaloids resulted in the basolateral expression of PSMA and increased the uptake of anti-PSMA antibody from the basolateral domain. These results may have important relevance to PSMA-based immunotherapy and imaging strategies, as prostate cancer cells can maintain a well-differentiated morphology even after metastasis to distal sites. In contrast to antigens on the basolateral surface, apical antigens are separated from the circulation by tight junctions that restrict transport of molecules across the epithelium. Thus, antigens expressed on the apical plasma membrane are not exposed to intravenously administered agents. The ability to reverse the polarity of PSMA from apical to basolateral could have significant implications for the use of PSMA as a therapeutic target.


Assuntos
Antígenos de Superfície/metabolismo , Membrana Celular/metabolismo , Células Epiteliais/metabolismo , Marcação de Genes , Glutamato Carboxipeptidase II/metabolismo , Rim/metabolismo , Microtúbulos/metabolismo , Próstata/metabolismo , Animais , Antineoplásicos/farmacologia , Polaridade Celular/fisiologia , Cães , Células Epiteliais/citologia , Glicosilação , Complexo de Golgi , Humanos , Imunoterapia , Masculino , Nocodazol/farmacologia , Transporte Proteico
19.
Mol Biol Cell ; 16(3): 1082-94, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15616195

RESUMO

The Na,K-ATPase, consisting of alpha- and beta-subunits, regulates intracellular ion homeostasis. Recent studies have demonstrated that Na,K-ATPase also regulates epithelial cell tight junction structure and functions. Consistent with an important role in the regulation of epithelial cell structure, both Na,K-ATPase enzyme activity and subunit levels are altered in carcinoma. Previously, we have shown that repletion of Na,K-ATPase beta1-subunit (Na,K-beta) in highly motile Moloney sarcoma virus-transformed Madin-Darby canine kidney (MSV-MDCK) cells suppressed their motility. However, until now, the mechanism by which Na,K-beta reduces cell motility remained elusive. Here, we demonstrate that Na,K-beta localizes to lamellipodia and suppresses cell motility by a novel signaling mechanism involving a cross-talk between Na,K-ATPase alpha1-subunit (Na,K-alpha) and Na,K-beta with proteins involved in phosphatidylinositol 3-kinase (PI3-kinase) signaling pathway. We show that Na,K-alpha associates with the regulatory subunit of PI3-kinase and Na,K-beta binds to annexin II. These molecular interactions locally activate PI3-kinase at the lamellipodia and suppress cell motility in MSV-MDCK cells, independent of Na,K-ATPase ion transport activity. Thus, these results demonstrate a new role for Na,K-ATPase in regulating carcinoma cell motility.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , ATPase Trocadora de Sódio-Potássio/fisiologia , Actinas/química , Actinas/metabolismo , Animais , Anexina A2/química , Anexina A2/genética , Linhagem Celular , Movimento Celular , Cromatografia Líquida , Cromonas/farmacologia , Clonagem Molecular , Citoplasma/metabolismo , Citoesqueleto , Cães , Células Epiteliais/citologia , Glutationa Transferase/metabolismo , Immunoblotting , Imunoprecipitação , Íons , Espectrometria de Massas , Microscopia Confocal , Microscopia de Fluorescência , Modelos Biológicos , Morfolinas/farmacologia , Peptídeo-N4-(N-acetil-beta-glucosaminil) Asparagina Amidase/metabolismo , Faloidina/farmacologia , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , ATPase Trocadora de Sódio-Potássio/química , Junções Íntimas , Proteínas rac1 de Ligação ao GTP/metabolismo
20.
Pancreas ; 29(3): e77-83, 2004 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-15367897

RESUMO

OBJECTIVES: Epithelial cells have distinct apical and basolateral plasma membrane domains separated by tight junctions. This phenotype is essential for the directional transport functions of epithelial cells. Here we characterized a well-differentiated pancreatic epithelial cell line to establish a useful model for understanding the mechanisms involved in the regulation of junctional complexes, polarity, and disease processes in the pancreas. METHODS: Immunofluorescence of cell junction marker proteins and electron microscopy were used to determine the presence of tight junctions, adherens junctions, and desmosomes. The functionality of tight junctions was tested by transepithelial resistance measurements and transepithelial permeability studies of nonionic molecules. Tight junction function in polarity was determined by laser scanning confocal microscopy. RESULTS: Immunofluorescence analysis in HPAF-II cells revealed tight junction localization of ZO-1, occludin, and claudin-4; adherens junction localization of E-cadherin and beta-catenin; and desmosomal localization of desmocollin. Transmission electron microscopy showed the presence of tight junctions, adherens junctions, and des-mosomes, and freeze-fracture electron microscopy revealed the presence of distinct anastomosing tight junction strands. Transepithelial electrical resistance and permeability measurements revealed functional tight junctions. In addition, 3-dimensional images of the monolayer generated by laser scanning confocal microscopy revealed that HPAF-II cells show polarity. Immunoblotting and RT-PCR analyses revealed high expression levels of E-cadherin and Na,K-ATPase beta-subunit but low levels of the transcription factor Snail in HPAF-II cells compared with MiaPaCa-2 cells. CONCLUSION: The HPAF-II cell line is a well-differentiated human pancreatic carcinoma cell line that should be useful as a model for studies aimed at understanding epithelial polarity, regulation of junctional complexes, and disease processes in pancreas.


Assuntos
Carcinoma Ductal Pancreático/patologia , Neoplasias Pancreáticas/patologia , Junções Aderentes/química , Junções Aderentes/ultraestrutura , Biomarcadores , Caderinas/análise , Diferenciação Celular , Linhagem Celular Tumoral/patologia , Linhagem Celular Tumoral/fisiologia , Polaridade Celular , Claudina-4 , Proteínas do Citoesqueleto/análise , Desmossomos/química , Desmossomos/ultraestrutura , Impedância Elétrica , Células Epiteliais/patologia , Células Epiteliais/fisiologia , Humanos , Glicoproteínas de Membrana/análise , Proteínas de Membrana/análise , Ocludina , Fosfoproteínas/análise , Junções Íntimas/química , Junções Íntimas/ultraestrutura , Transativadores/análise , Proteína da Zônula de Oclusão-1 , beta Catenina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...