Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 111(8): 085503, 2013 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-24010453

RESUMO

We report on the hydrogen adsorption induced phase transition of a few layer graphene (1 to 4 layers) to a diamondlike structure on Pt(111) based on core level x-ray spectroscopy, temperature programed desorption, infrared spectroscopy, and density functional theory total energy calculations. The surface adsorption of hydrogen induces a hybridization change of carbon from the sp2 to the sp3 bond symmetry, which propagates through the graphene layers, resulting in interlayer carbon bond formation. The structure is stabilized through the termination of interfacial sp3 carbon atoms by the substrate. The structural transformation occurs as a consequence of high adsorption energy.

2.
Angew Chem Int Ed Engl ; 51(31): 7724-8, 2012 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-22711521

RESUMO

Scratching beneath the surface: Pt-M(3d)-Pt(111) (M(3d) = Co, Ni) bimetallic subsurface alloys have been designed to show the ligand effect tunes reactivity in oxygen and hydrogen adsorption systems. The platinum-oxygen bond order was investigated by oxygen atom projection in the occupied and unoccupied space using X-ray emission spectroscopy (XES) and X-ray absorption spectroscopy (XAS).

3.
J Am Chem Soc ; 133(14): 5580-6, 2011 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-21428292

RESUMO

Using in situ electrical conductivity and ex situ X-ray photoelectron spectroscopy (XPS) measurements, we have examined how the hydrogen uptake of single-walled carbon nanotubes (SWNTs) is influenced by the addition of Pt nanoparticles. The conductivity of platinum-sputtered single-walled carbon nanotubes (Pt-SWNTs) during molecular hydrogen exposure decreased more rapidly than that of the corresponding pure SWNTs, which supports a hydrogenation mechanism facilitated by "spillover" of dissociated hydrogen from the Pt nanoparticles. C 1s XPS spectra indicate that the Pt-SWNTs store hydrogen by means of chemisorption, that is, covalent C-H bond formation: molecular hydrogen charging at elevated pressure (8.27 bar) and room temperature yielded Pt-SWNTs with up to 16 ± 1.5 at. % sp(3)-hybridized carbon atoms, which corresponds to a hydrogen-storage capacity of 1.2 wt % (excluding the weight of Pt nanoparticles). Pt-SWNTs prepared by the Langmuir-Blodgett (LB) technique exhibited the highest Pt/SWNT ratio and also the best hydrogen uptake.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA