Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Gene Ther ; 32(1-2): 113-127, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32741228

RESUMO

Hematopoietic stem and progenitor cell (HSPC)-based ex vivo gene therapy has demonstrated clinical success for X-linked severe combined immunodeficiency (SCID-X1) patients who lack a suitable donor for HSPC transplantation. Nevertheless, this form of treatment is associated with an increased risk of infectious disease complications and genotoxicity mainly due to the conditioning regimen. In addition, ex vivo gene therapy approaches require sophisticated facilities to manufacture gene-modified cells and to care for the patients after chemotherapy. Considering these impediments, we have developed an in vivo gene therapy approach to treat canine SCID-X1 after HSPC mobilization and systemic delivery of the therapeutic vector. Here, we investigated the use of the cocal envelope to pseudotype a lentiviral (LV) vector expressing a functional gammaC gene. The cocal envelope is resistant to serum inactivation compared with the commonly used vesicular stomatitis virus envelope glycoprotein (VSV-G) envelope and thus well suited for systemic delivery. Two SCID-X1 neonatal canines treated with this approach achieved long-term therapeutic immune reconstitution with no prior conditioning. Therapeutic levels of gene-corrected CD3+ T cells were demonstrated for at least 16 months, and all other correlates of T cell functionality were within normal range. Retroviral integration-site analysis demonstrated polyclonal T cell reconstitution. Comparative analysis of integration profiles of foamy viral (FV) vector and cocal LV vector after in vivo gene therapy found distinct integration-site patterns. These data demonstrate that clinically relevant and durable correction of canine SCID-X1 can be achieved with in vivo delivery of cocal LV. Since manufacturing of cocal LV is similar to VSV-G LV, this approach is easily translatable to a clinical setting, thus providing for a highly portable and accessible gene therapy platform for SCID-X1.


Assuntos
Spumavirus , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X , Animais , Cães , Terapia Genética , Vetores Genéticos/genética , Células-Tronco Hematopoéticas , Humanos , Lentivirus/genética , Transdução Genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/terapia
2.
Mol Ther Methods Clin Dev ; 17: 455-464, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32226796

RESUMO

Conditioning chemotherapy is used to deplete hematopoietic stem cells in the recipient's marrow, facilitating donor cell engraftment. Although effective, a major issue with chemotherapy is the systemic genotoxicity that increases the risk for secondary malignancies. Antibody conjugates targeting hematopoietic cells are an emerging non-genotoxic method of opening the marrow niche and promoting engraftment of transplanted cells while maintaining intact marrow cellularity. Specifically, this platform would be useful in diseases associated with DNA damage or cancer predisposition, such as dyskeratosis congenita, Schwachman-Diamond syndrome, and Fanconi anemia (FA). Our approach utilizes antibody-drug conjugates (ADC) as an alternative conditioning regimen in an FA mouse model of autologous transplantation. Antibodies targeting either CD45 or CD117 were conjugated to saporin (SAP), a ribosomal toxin. FANCA knockout mice were conditioned with either CD45-SAP or CD117-SAP prior to receiving whole marrow from a heterozygous healthy donor. Bone marrow and peripheral blood analysis revealed equivalent levels of donor engraftment, with minimal toxicity in ADC-treated groups as compared with cyclophosphamide-treated controls. Our findings suggest ADCs may be an effective conditioning strategy in stem cell transplantation not only for diseases where traditional chemotherapy is not tolerated, but also more broadly for the field of blood and marrow transplantation.

3.
Viruses ; 11(12)2019 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-31771194

RESUMO

Foamy viruses (FVs) are nonpathogenic retroviruses that infect various animals including bovines, felines, nonhuman primates (NHPs), and can be transmitted to humans through zoonotic infection. Due to their non-pathogenic nature, broad tissue tropism and relatively safe integration profile, FVs have been engineered as novel vectors (foamy virus vector, FVV) for stable gene transfer into different cells and tissues. FVVs have emerged as an alternative platform to contemporary viral vectors (e.g., adeno associated and lentiviral vectors) for experimental and therapeutic gene therapy of a variety of monogenetic diseases. Some of the important features of FVVs include the ability to efficiently transduce hematopoietic stem and progenitor cells (HSPCs) from humans, NHPs, canines and rodents. We have successfully used FVV for proof of concept studies to demonstrate safety and efficacy following in-vivo delivery in large animal models. In this review, we will comprehensively discuss FVV based in-vivo gene therapy approaches established in the X-linked severe combined immunodeficiency (SCID-X1) canine model.


Assuntos
Terapia Genética , Vetores Genéticos , Spumavirus/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/veterinária , Animais , Gatos , Bovinos , Modelos Animais de Doenças , Cães , Células-Tronco Hematopoéticas/fisiologia , Humanos , Células-Tronco/fisiologia , Transdução Genética/veterinária , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/terapia
4.
Blood Adv ; 2(9): 987-999, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29720491

RESUMO

Hematopoietic stem-cell gene therapy is a promising treatment of X-linked severe combined immunodeficiency disease (SCID-X1), but currently, it requires recipient conditioning, extensive cell manipulation, and sophisticated facilities. With these limitations in mind, we explored a simpler therapeutic approach to SCID-X1 treatment by direct IV administration of foamy virus (FV) vectors in the canine model. FV vectors were used because they have a favorable integration site profile and are resistant to serum inactivation. Here, we show improved efficacy of our in vivo gene therapy platform by mobilization with granulocyte colony-stimulating factor (G-CSF) and AMD3100 before injection of an optimized FV vector incorporating the human phosphoglycerate kinase enhancerless promoter. G-CSF/AMD3100 mobilization before FV vector delivery accelerated kinetics of CD3+ lymphocyte recovery, promoted thymopoiesis, and increased immune clonal diversity. Gene-corrected T lymphocytes exhibited a normal CD4:CD8 ratio and a broad T-cell receptor repertoire and showed restored γC-dependent signaling function. Treated animals showed normal primary and secondary antibody responses to bacteriophage immunization and evidence for immunoglobulin class switching. These results demonstrate safety and efficacy of an accessible, portable, and translatable platform with no conditioning regimen for the treatment of SCID-X1 and other genetic diseases.


Assuntos
Doenças do Cão , Terapia Genética , Vetores Genéticos/farmacologia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Mobilização de Células-Tronco Hematopoéticas , Compostos Heterocíclicos/farmacologia , Spumavirus , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X , Animais , Benzilaminas , Relação CD4-CD8 , Ciclamos , Modelos Animais de Doenças , Doenças do Cão/sangue , Doenças do Cão/genética , Doenças do Cão/terapia , Cães , Humanos , Fosfoglicerato Quinase/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/sangue , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/genética , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/terapia , Doenças por Imunodeficiência Combinada Ligada ao Cromossomo X/veterinária
5.
Antioxid Redox Signal ; 14(11): 2165-77, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20812861

RESUMO

Retinoic acids (RAs) have diverse biologic effects and regulate several cellular functions. Here, we investigated the role of RA on autophagy by studying its effects on autophagosome (AUT) maturation, as well as on upstream regulators of autophagosome biogenesis. Our studies, based on the use of pH-sensitive fluorescent reporter markers, suggested that RA promotes AUT acidification and maturation. By using competitive inhibitors and specific agonists, we demonstrated that this effect is not mediated by the classic RAR and RXR receptors. RA did not affect the levels of upstream regulators of autophagy, such as Beclin-1, phospho-mTOR, and phospho-Akt1, but induced redistribution of both endogenous cation-independent mannose-6-phosphate receptor CIMPR and transiently transfected GFP and RFP full-length CIMPR fusion proteins from the trans-Golgi region to acidified AUT structures. Those structures were found to be amphisomes (acidified AUTs) and not autophagolysosomes. The critical role of CIMPR in AUT maturation was further demonstrated by siRNA-mediated silencing of endogenous CIMPR. Transient CIMPR knockdown resulted in remarkable accumulation of nonacidified AUTs, a process that could not be reversed with RA. Our results suggest that RA induces AUT acidification and maturation, a process critical in the cellular autophagic mechanism.


Assuntos
Autofagia/efeitos dos fármacos , Fagossomos/metabolismo , Receptor IGF Tipo 2/metabolismo , Tretinoína/fisiologia , Proteínas Reguladoras de Apoptose/metabolismo , Proteína Beclina-1 , Citotoxinas/farmacologia , Endossomos/metabolismo , Células HeLa , Humanos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fagossomos/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Interferência de RNA , Receptor IGF Tipo 2/genética , Receptores do Ácido Retinoico/metabolismo , Receptores X de Retinoides/metabolismo , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Tretinoína/farmacologia , Proteínas rab de Ligação ao GTP/metabolismo , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/metabolismo
6.
Autophagy ; 6(8): 1224-6, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20953149

RESUMO

Autophagy is an intracellular catabolic process that responds with great sensitivity to nutrient availability, implying that certain macro- or micro-nutrients are involved. We found that retinoic acid promotes autophagosome maturation through a pathway independent from the classic nuclear retinoid receptors. Retinoic acid redistributes the cation-independent mannose-6-phosphate receptor from the trans-Golgi region to maturing autophagosomal structures inducing their acidification. Manipulation of the autophagic activity by retinoids could have enormous health implications, since they are essential dietary components and frequently used pharmaceuticals.


Assuntos
Autofagia/efeitos dos fármacos , Tretinoína/farmacologia , Células HeLa , Humanos , Modelos Biológicos , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Receptor IGF Tipo 2/metabolismo , Receptores do Ácido Retinoico/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Sirolimo/farmacologia , Rede trans-Golgi/efeitos dos fármacos , Rede trans-Golgi/metabolismo
7.
Cancer Immunol Immunother ; 59(11): 1685-96, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20652244

RESUMO

Virus-like particles (VLPs) are promising vaccine technology due to their safety and ability to elicit strong immune responses. Chimeric VLPs can extend this technology to low immunogenicity foreign antigens. However, insertion of foreign epitopes into the sequence of self-assembling proteins can have unpredictable effects on the assembly process. We aimed to generate chimeric bovine papillomavirus (BPV) VLPs displaying a repetitive array of polyanionic docking sites on their surface. These VLPs can serve as platform for covalent coupling of polycationic fusion proteins. We generated baculoviruses expressing chimeric BPV L1 protein with insertion of a polyglutamic-cysteine residue in the BC, DE, HI loops and the H4 helix. Expression in insect cells yielded assembled VLPs only from insertion in HI loop. Insertion in DE loop and H4 helix resulted in partially formed VLPs and capsomeres, respectively. The polyanionic sites on the surface of VLPs and capsomeres were decorated with a polycationic MUC1 peptide containing a polyarginine-cysteine residue fused to 20 amino acids of the MUC1 tandem repeat through electrostatic interactions and redox-induced disulfide bond formation. MUC1-conjugated fully assembled VLPs induced robust activation of bone marrow-derived dendritic cells, which could then present MUC1 antigen to MUC1-specific T cell hybridomas and primary naïve MUC1-specific T cells obtained from a MUC1-specific TCR transgenic mice. Immunization of human MUC1 transgenic mice, where MUC1 is a self-antigen, with the VLP vaccine induced MUC1-specific CTL, delayed the growth of MUC1 transplanted tumors and elicited complete tumor rejection in some animals.


Assuntos
Vacinas Anticâncer/uso terapêutico , Proteínas do Capsídeo/imunologia , Linfoma de Células T/terapia , Mucina-1/imunologia , Vacinas contra Papillomavirus/uso terapêutico , Fragmentos de Peptídeos/imunologia , Animais , Proteínas do Capsídeo/genética , Bovinos , Ensaio de Imunoadsorção Enzimática , Humanos , Ativação Linfocitária , Linfoma de Células T/genética , Linfoma de Células T/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Papillomaviridae/genética , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Peptídeos/imunologia , Linfócitos T/imunologia , Linfócitos T Citotóxicos/imunologia , Vírion/genética , Vírion/imunologia
8.
Ageing Res Rev ; 8(3): 199-213, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19427410

RESUMO

The lysosomal network is the major intracellular proteolytic system accounting for more than 98% of long-lived bulk protein degradation and recycling particularly in tissues such as liver and muscles. Lysosomes are the final destination of intracellular damaged structures, identified and sequestered by the processes of macroautophagy and chaperone-mediated autophagy (CMA). In the process of macroautophagy, long-lived proteins and other macromolecular aggregates and damaged intracellular organelles are first engulfed by autophagosomes. Autophagosomes themselves have limited degrading capacity and rely on fusion with lysosomes. Unlike macroautophagy, CMA does not require intermediate vesicle formation and the cytosolic proteins recognized by this pathway are directly translocated to the lysosomal membrane. Aging is a universal phenomenon characterized by progressive deterioration of cells and organs due to accumulation of macromolecular and organelle damage. The continuous removal of worn-out components and replacement with newly synthesized ones ensures cellular homeostasis and delays the aging process. Growing evidence indicate that the rate of autophagosome formation and maturation and the efficiency of autophagosome/lysosome fusion decline with age. In addition, a progressive increase in intralysosomal concentration of free radicals and the age pigment lipofuscin further diminish the efficiency of lysosomal protein degradation. Therefore, integrity of the autophagosomal-lysosomal network appears to be critical in the progression of aging. Discovery of the genes involved in the process of autophagy has provided insight into the various molecular pathways that may be involved in aging and senescence. In this review, we discuss the cellular and molecular mechanisms involved in autophagy and the role of autophagosome/lysosome network in the aging process.


Assuntos
Envelhecimento/metabolismo , Autofagia/fisiologia , Senescência Celular/fisiologia , Lisossomos/metabolismo , Proteínas/metabolismo , Animais , Radicais Livres/metabolismo , Humanos , Lipofuscina/metabolismo , Estresse Oxidativo/fisiologia , Transdução de Sinais/fisiologia
9.
J Virol Methods ; 149(2): 260-3, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18329729

RESUMO

The present study was aimed at developing the polymerase chain reaction (PCR) assay for detection of canine adenoviruses from faecal or urine samples. Urine or faecal samples were treated with chloroform or activated charcoal to eliminate the PCR inhibitory substances and the total DNA was extracted. The PCR was optimized using common set of primers to amplify 508 bp or 1,030 bp DNA sequence within E3 gene of canine adenovirus-1 (CAV-1) and canine adenovirus-2 (CAV-2), respectively. The PCR assay could detect up to 0.016 TCID(50) viruses from CAV-1 infected MDCK cell culture fluid, 1.6 TCID(50) viruses from faeces and 16 TCID(50) viruses from urine. In addition, the PCR assay was validated using clinical samples. Based on the results, it is concluded that, the present PCR assay can be used for rapid detection of canine adenoviral infections.


Assuntos
Infecções por Adenoviridae/diagnóstico , Adenovirus Caninos/isolamento & purificação , Doenças do Cão/diagnóstico , Fezes/virologia , Reação em Cadeia da Polimerase/métodos , Urina/virologia , Infecções por Adenoviridae/virologia , Proteínas E3 de Adenovirus/genética , Adenovirus Caninos/genética , Animais , Linhagem Celular , Primers do DNA/genética , DNA Viral/isolamento & purificação , Doenças do Cão/virologia , Cães , Sensibilidade e Especificidade
10.
Hormones (Athens) ; 7(1): 46-61, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18359744

RESUMO

Autophagy (ATG) is the process of bulk degradation and recycling of long-lived proteins, macromolecular aggregates, and damaged intracellular organelles. Cellular homeostasis requires continuous removal of worn-out components and replacement with newly synthesized ones. Studies in yeast and other mammalian systems have increased our knowledge of the molecular mechanism of autophagy and the role of autophagy in various pathological conditions. Discovery of the genes involved in the process of autophagy has provided insight into the involvement of various molecular pathways. Growing evidence has indicated that diminished autophagic activity may play a pivotal role in the aging process. Cellular aging is characterized by a progressive accumulation of nonfunctional cellular components owing to oxidative damage and a decline in turnover rate and housekeeping mechanisms. Lysosomes are key organelles in the aging process due to their involvement in both macroautophagy and other housekeeping mechanisms. Autophagosomes themselves have limited degrading capacity and rely on fusion with lysosomes. Accumulation of defective mitochondria also appears to be critical in the progression of aging. Inefficient removal of nonfunctional mitochondria by lysosomes constitutes a major issue in the aging process. Autophagy has been associated with a growing number of pathological conditions, including cancer, myopathies, and neurodegenerative disorders. In this review, we discuss the cellular and molecular mechanisms involved in autophagy, the mechanisms of aging, and the possible role of autophagy in this process. Understanding the mechanisms by which autophagy impacts aging may provide useful molecular targets for pharmaceuticals designed to delay aging or correct conditions of premature aging.


Assuntos
Envelhecimento/fisiologia , Autofagia/fisiologia , Doenças Neurodegenerativas/patologia , Idoso , Humanos , Lisossomos/fisiologia , Neurônios/patologia , Neurônios/fisiologia
11.
Arch Virol ; 153(4): 749-54, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18288442

RESUMO

Newcastle disease virus (NDV), an avian paramyxovirus, induces apoptosis in chicken embryo fibroblast (CEF) cells. In the present investigation, the ability of haemagglutinin-neuraminidase (HN) protein of NDV to cause apoptosis in CEF cells was examined. The results revealed that cells expressing the HN protein demonstrated decreased DNA content, phosphatidylserine exposure and increased cytoplasmic vacuolation. Up-regulation of caspase-1, -9, -8, -3, loss of mitochondrial transmembrane potential and an increase in oxidative stress were also observed in cells expressing the HN protein. Based on the above results it can be concluded that HN protein of NDV causes apoptosis in CEF cells.


Assuntos
Apoptose , Fibroblastos/virologia , Proteína HN/metabolismo , Vírus da Doença de Newcastle/patogenicidade , Animais , Caspases/metabolismo , Células Cultivadas , Embrião de Galinha/citologia , Fibroblastos/metabolismo , Fibroblastos/patologia , Vírus da Doença de Newcastle/metabolismo , Estresse Oxidativo , Fosfatidilserinas/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...