Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 912: 168849, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38056638

RESUMO

Saccharides are ubiquitous organic compounds that are omnipresent in nature and are considered tracers of aerosol sources. Saccharides and hemicellulose were analyzed in the aerosols of two polluted regions (Allahabad, India and Sosnowiec, Poland). The chemical compositions of the compounds and their abundances were significantly different at the two sites. Levoglucosan was the most dominant saccharide present at both sites. Galactosan, anhydroglucofuranose, mannosan, glucose, arabitol, D-pinitol, sucrose, and trehalose were found in Allahabad samples in high abundance but were significantly lower than levoglucosan. Mannosan, galactosan, arabinose, glycerol, and sucrose were significant compounds in Sosnowiec after dominating levoglucosan. The major sources of saccharides present in the Allahabad aerosols are hardwood and agricultural waste-burning emissions, whereas those at Sosnowiec are attributed to the burning of softwood (mainly gymnosperm trees), pine needles, or sporadically grass during the winter. Further, the chemical characteristics of hemicellulose remnants present in ambient aerosol at the Indian and European sites were analyzed and discussed. At both locations, hemicellulose was found using methanolysis of the filter samples; however, its state of preservation was poor. We believe that the primary sources of hemicellulose remnants are incomplete wood burning, crop straw, grass burning, or plant debris. Relatively poor preservation is associated with partial hemicellulose degradation when exposed to elevated temperatures or due to the oxidation and microbial degradation of plant fragments.


Assuntos
Poluentes Atmosféricos , Material Particulado , Polissacarídeos , Material Particulado/análise , Poluentes Atmosféricos/análise , Europa (Continente) , Sacarose , Aerossóis/análise , Monitoramento Ambiental , Biomassa , Estações do Ano
2.
Environ Pollut ; 314: 120228, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36162556

RESUMO

PM2.5 (particulate matter having aerodynamic diameter ≤2.5 µm) samples were collected during wintertime from two polluted urban sites (Allahabad and Kanpur) in the central Indo-Gangetic Plain (IGP) to comprehend the sources and atmospheric transformations of light-absorbing water-soluble organic aerosol (WSOA). The aqueous extract of each filter was atomized and analyzed in a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Water-soluble organic carbon (WSOC) and WSOA concentrations at Kanpur were ∼1.2 and ∼1.5 times higher than that at Allahabad. The fractions of WSOC and secondary organic carbon (SOC) to total organic carbon (OC) were also significantly higher ∼53% and 38%, respectively at Kanpur compared to Allahabad. This indicates a higher abundance of oxidized WSOA at Kanpur. The absorption coefficient (babs-365) of light-absorbing WSOA measured at 365 nm was 46.5 ± 15.5 Mm-1 and 73.2 ± 21.6 Mm-1 in Allahabad and Kanpur, respectively, indicating the dominance of more light-absorbing fractions in WSOC at Kanpur. The absorption properties such as mass absorption efficiency (MAE365) and imaginary component of refractive index (kabs-365) at 365 nm at Kanpur were also comparatively higher than Allahabad. The absorption forcing efficiency (Abs SFE; indicates warming effect) of WSOA at Kanpur was ∼1.4 times higher than Allahabad. Enhancement in light absorption capacity was observed with the increase in f44/f43 (fraction of m/z 44 (f44) to 43 (f43) in organic mass spectra) and O/C (oxygen to carbon) ratio of WSOA at Kanpur while no such trend was observed for the Allahabad site. Moreover, the correlation between carbon fractions and light absorption properties suggested the influence of low-volatile organic compounds (OC3 + OC4 fraction obtained from thermal/optical carbon analyzer) in increasing the light absorption capacity of WSOA in Kanpur.


Assuntos
Poluentes Atmosféricos , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Água , Monitoramento Ambiental , Aerossóis/análise , Material Particulado/análise , Carbono/análise , Oxigênio
3.
Viruses ; 14(7)2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35891477

RESUMO

The airborne transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been identified as a potential pandemic challenge, especially in poorly ventilated indoor environments, such as certain hospitals, schools, public buildings, and transports. The impacts of meteorological parameters (temperature and humidity) and physical property (droplet size) on the airborne transmission of coronavirus in indoor settings have been previously investigated. However, the impacts of chemical properties of viral droplets and aerosol particles (i.e., chemical composition and acidity (pH)) on viability and indoor transmission of coronavirus remain largely unknown. Recent studies suggest high organic content (proteins) in viral droplets and aerosol particles supports prolonged survival of the virus by forming a glassy gel-type structure that restricts the virus inactivation process under low relative humidity (RH). In addition, the virus survival was found at neutral pH, and inactivation was observed to be best at low (<5) and high pH (>10) values (enveloped bacteriophage Phi6). Due to limited available information, this article illustrates an urgent need to research the impact of chemical properties of exhaled viral particles on virus viability. This will improve our fundamental understanding of indoor viral airborne transmission mechanisms.


Assuntos
COVID-19 , SARS-CoV-2 , Aerossóis , Humanos , Viabilidade Microbiana , Aerossóis e Gotículas Respiratórios
4.
ACS Omega ; 7(2): 1575-1584, 2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35071853

RESUMO

Aerosols are an important part of Earth's atmosphere. They can absorb, scatter, or reflect the incoming solar radiation, which results in heating or cooling of Earth, thus impacting its climate. It affects the health of exposed human population adversely, reduces visibility, disturbs environmental systems, and causes material damage. This study summarizes the research carried out to understand the role of aerosol load and its physicochemical characteristics on occurrence, frequency, and magnitude of haze and fog events during wintertime within the Indo Gangetic Plain (IGP) in the past decade. For most species, the highest concentration was measured during foggy events at night-time over the winter season. A few species such as water-soluble organic and inorganic carbon (WSOC and WSIC), K+, SO4 2-, and NO3 -, owing to their hygroscopic nature, were efficiently scavenged, resulting in their lower concentration within the interstitial aerosol during fog episodes. Oligomerization with hydroxy and carbonyl functional groups during AFP (activating fog period) and DFP (dissipating fog period), respectively, accompanied by acidic aerosol (having catalytic ability) and high aerosol liquid water content conditions was found to be significant. Whereas the fragmentation process was dominant along with functionalization of -RCOOH or carbonyl (aldehyde/ketone) and -RCOOH moieties during FP (fog period) and PoFP (post-fog period), respectively. Transition metals play an important role in aqueous production of secondary organic aerosol (SOA) especially during the night-time. Crustal sources had the highest scavenging efficiency along with WSOC playing an important role in nucleation scavenging. Fine droplets had a higher concentration of species with a larger fraction of highly oxidized organic matter (OM) as compared to coarse or medium size droplets. Also, a new approach to calculate absorption by black carbon (BC) and brown carbon (BrC) was proposed, which found the water-soluble brown carbon (WSBrC) absorption value in aerosol to be up to 1.8 times higher than that measured in their corresponding aqueous extracts. Organic aerosol plays a vital role in facilitating fog formation and is responsible for the longer residence time in the ambient atmosphere. Ammonia plays an important role in stabilizing organic aerosol and aids to this recurring haze-fog-haze cycle that is dominant during wintertime in the IGP. Therefore, controlling the major anthropogenic sources of organic aerosol and ammonia should be our top priority in this part of the world.

5.
Redox Biol ; 48: 102189, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34826784

RESUMO

Using particulate matter (PM) mass as exposure metric does not reveal the intrinsic PM chemical characteristics or toxic potential, which is crucial for monitoring the sources of emission causing adverse health effects and developing risk mitigating strategies. Oxidative stress and ensuing lipid peroxidation (LPO) in the lung are crucial underlying mechanisms of action by which PM drives cardiorespiratory disease. In the current study, we have postulated and demonstrated that the intrinsic potential of PM to elicit LPO, defined as "LPO index" as a novel approach for characterizing oxidative potential of PM (PMOP) and predicting biological toxicity. First, we exposed unsaturated phosphatidylcholine (PC), an abundant phospholipid in the cell membrane, pulmonary surfactant, and lipoproteins to PM and analyzed the total burden of LPO byproducts generated as a measure of LPO index using a LPO reporter dye, BODIPY-C11. PM exposure resulted in a concentration-dependent increase in LPO. Second, we developed a novel method to expose the captured serum apoB100 lipoprotein particles to PM or its constituents and assessed the levels of specific oxidized-phospholipid on apoB100 particles by immunoassay using E06 monoclonal antibody (mab) that recognizes only PC containing oxidized-phospholipids (Ox-PCs). The immunoassay was highly sensitive to evaluate the PM LPO index and was modifiable by metal quenchers and exogenous antioxidant and radical quenchers. Third, to prove the pathophysiological relevance of Ox-PCs, we found that PM exposure generates Ox-PCs in mice lungs, pulmonary surfactant and lung cells. Fourth, we observed that treatment of macrophages with BAL fluid from PM exposed mice or PM-exposed pulmonary surfactant stimulated IL-6 production, which was abrogated by neutralization of Ox-PCs by mab E06 suggesting that Ox-PCs in lungs are proinflammatory. Overall, our study suggests that Ox-PCs as a probe of PM LPO index is a biologically relevant pathogenic biomarker and has a high value for evaluating PMOP.

6.
Environ Pollut ; 270: 116082, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33272802

RESUMO

Post-harvest crop residue burning is extensively practiced in North India, which results in enhanced particulate matter (PM) concentrations. This study explores the PM2.5 (particulate matter with aerodynamic diameter ≤ 2.5 µm) emissions during various time periods (pre-monsoon, monsoon, and post-monsoon) over the biomass burning source region in Beas, Punjab. The PM2.5 concentrations during the pre-monsoon period (106-458 µg m-3) and the post-monsoon period (184-342 µg m-3) were similar but much higher than concentrations during the monsoon season (23-95 µg m-3) due to enhanced wet deposition. However, the carbonaceous aerosol fraction in PM2.5 was nearly double in the post-monsoon season (∼27%) than the pre-monsoon period (∼15%). A higher contribution of secondary organic carbon (SOC) observed during the pre-monsoon season can be attributed to enhanced photochemical activity in dry conditions. Stable carbon isotope ratio (δ13C value) of ambient PM allowed elucidation of contributing sources. δ13CTC correlation with SOC during post-monsoon and pre-monsoon periods suggests significant influence of secondary formation processes during both time periods. The concentrations of carbon fractions in sampled sources and aerosols suggests contribution of biofuels, resulting in enhanced PM concentration at this location. δ13CTC values of pre- and post-monsoon samples show dominance of freshly emitted aerosols from local sources. Impact of biomass and biofuel combustion was also confirmed by biomass burning K+BB tracer, indicating that major agriculture residue burning occurred primarily during nighttime. C3 plant derived aerosols dominated at the sampling location during the entire sampling duration and contributed significantly during the pre-monsoon season. Whereas, both fossil fuel and C3 plant combustion contributed to the total mass of carbonaceous aerosols during the post-monsoon and monsoon seasons.


Assuntos
Poluentes Atmosféricos , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Carbono/análise , Monitoramento Ambiental , Índia , Material Particulado/análise , Estações do Ano
7.
Sci Total Environ ; 763: 143032, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33131840

RESUMO

Measurements of water-soluble total nitrogen (WSTN), water-soluble inorganic nitrogen (WSIN), water-soluble organic nitrogen (WSON) and ẟ15NTN (total N) was carried out on PM2.5 aerosol samples during wintertime to understand the major sources of ambient nitrogenous species at a heavily polluted location of Kanpur in north India. During the nighttime sampling campaign, WSON and NH4+_N contributed dominantly to the WSTN. Ammonium-rich condition persisted during sampling (NH4+/SO42- average equivalent mass ratio = 3.1 ± 0.7), suggesting complete neutralization of SO42- and formation of NH4NO3, which is stable in winter due to low temperature and high relative humidity (RH). Stagnant atmospheric conditions during wintertime enhanced concentrations of ionic species (SO42-, NH4+, and NO3-) at this location. Good correlations between NO3-_N, NH4+_N and biomass burning tracer K+BB (and also between NO3-_N, NH4+_N and SO42-) suggests a strong impact of biomass burning activities. Multi-linear regression (MLR) analysis shows a strong dependence of ẟ15N on NO3-_N, SO42- and WSON in night-1 (10:00 pm to 2:00 am) and on NO3-_N and SO42- in night-2 (2:00 am to 6:00 am) depicting different formation and removal mechanism of aerosols during both the time-periods. ẟ15NTN in PM2.5 varied from +8.8 to +15.5‰ (10.8 ± 1.3), similar to the variability observed for many urban locations in India and elsewhere. NH4+_N and WSON control the final ẟ15N value of nitrogenous aerosols. High relative humidity during nighttime enhanced the secondary organic aerosols formation due to aqueous-phase formation and gas to particle-phase partitioning. Isotopic fractionations associated with multi-phase reactions during gas to particle conversion of NH3 would result in an increase in ẟ15N by ~48‰ to 51‰ (at T of 5.4 °C to 15.4 °C) than that of the emission source(s), which indicates the most likely N-emission sources at Kanpur to be from agriculture activities and waste generation.

8.
Sci Total Environ ; 599-600: 1573-1582, 2017 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-28535589

RESUMO

Filter samples collected during winter of 2015-16 from two polluted urban locations (Allahabad and Kanpur) residing within Indo-Gangetic plain (IGP) showed high levels of water-soluble organic aerosols (WSOA). Total organic aerosols (OA) in submicron fraction, measured at Kanpur in real time via Aerosol Mass Spectrometer also showed substantially high concentration levels. WSOA to OA contribution in Kanpur was found to be very high (around 55%) indicating significant contributions from secondary OA (SOA). On average, WSOA oxidation ratio (O/C) was found to be higher (15-20%) in Kanpur than at Allahabad. WSOA from Allahabad was found to be following a much shallower slope (-0.38) in Van Krevelen diagram (H/C vs O/C plot) than Kanpur (-0.58). These differences suggest different composition and chemistry of WSOA at these two different locations. O/C ratios of WSOA were found to be much higher (~40%) than that of OA and independent of WSOA loading. Higher OA loadings were found to be associated with less oxidized primary OAs (POA) and culminated into lower WSOA/OA ratios. The presence of organo sulfate in filter samples from both locations indicate a significant amount of aqueous processing of organics. Concentrations and characteristics of water insoluble OA (WIOA) in Kanpur revealed that although they are present in significant quantity, their oxidation levels are much (almost 3 times) lower than that of WSOA. This finding indicates that less oxidized OAs are less soluble in line with the conventional wisdom. This study provides the first insight into oxidation levels and evolution of WSOA from India and also explores the interplay between WSOA and OA characteristics based on AMS measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...