Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Fungi (Basel) ; 9(3)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36983478

RESUMO

The active and inexpensive catalyst cupric oxide (CuO) loaded foliar fertilizer of graphitic carbon nitride (g-C3N4) is investigated for biological applications due to its low cost and easy synthesis. The synthesized CuO NPs, bulk g-C3N4, exfoliated g-C3N4, and different weight percentages of 30 wt%, 40 wt%, 50 wt%, 60 wt%, and 70 wt% CuO-loaded g-C3N4 are characterized using different analytical techniques, including powder X-ray diffraction, scanning electron microscopy, energy dispersive X-ray analysis, and ultraviolet-visible spectroscopy. The nanocomposite of CuO NPs loaded g-C3N4 exhibits antibacterial activity against Gram-positive bacteria (Staphylococcus aureus and Streptococcus pyogenes) and Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). The 20 µg/mL of 70 wt% CuO/g-C3N4 nanocomposite showed an efficiency of 98% for Gram-positive bacteria, 80% for E. Coli, and 85% for P. aeruginosa. In the same way, since the 70 wt% CuO/g-C3N4 nanocomposite showed the best results for antibacterial activity, the same compound was evaluated for anti-fungal activity. For this purpose, the fungi Fusarium oxysporum and Trichoderma viride were used. The anti-fungal activity experiments were not conducted in the presence of sunlight, and no appreciable fungal inhibition was observed. As per the literature, the presence of the catalyst g-C3N4, without an external light source, reduces the fungal inhibition performance. Hence, in the future, some modifications in the experimental conditions should be considered to improve the anti-fungal activity.

2.
J Environ Manage ; 275: 111173, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32866923

RESUMO

The necessity of incorporating a resilience-informed approach into urban planning and its decision-making is felt now more than any time previously, particularly in low and middle income countries. In order to achieve a successful transition to sustainable, resilient and cost-effective cities, there is a growing attention given to more effective integration of nature-based solutions, such as Sustainable Drainage Systems (SuDS), with other urban components. The experience of SuDS integration with urban planning, in developed cities, has proven to be an effective strategy with a wide range of advantages and lower costs. The effective design and implementation of SuDS requires a multi-objective approach by which all four pillars of SuDS design (i.e., water quality, water quantity, amenity and biodiversity) are considered in connection to other urban, social, and economic aspects and constraints. This study develops a resilience-driven multi-objective optimisation model aiming to provide a Pareto-front of optimised solutions for effective incorporation of SuDS into (peri)urban planning, applied to a case study in Brazil. This model adopts the SuDS's two pillars of water quality and water quantity as the optimisation objectives with its level of spatial distribution as decision variables. Also, an improved quality of life index (iQoL) is developed to re-evaluate the optimal engineering solutions to encompass the amenity and biodiversity pillars of SuDS. Rain barrels, green roofs, bio-retention tanks, vegetation grass swales and permeable pavements are the suitable SuDS options identified in this study. The findings show that the most resilient solutions are costly but this does not guarantee higher iQoL values. Bio-retention tanks and grass swales play effective roles in promotion of water quality resilience but this comes with considerable increase in costs. Permeable pavements and green roofs are effective strategies when flood resilience is a priority. Rain barrel is a preferred solution due to the dominance of residential areas in the study area and the lower cost of this option.


Assuntos
Qualidade de Vida , Chuva , Brasil , Cidades , Inundações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...